
Laurie Williams
Laurie_williams@ncsu.edu 1

Vulnerable Components

Yingyaipumi /stock.adobe.com

https://stock.adobe.com/contributor/206013862/yingyaipumi?load_type=author&prev_url=detail
http://stock.adobe.com/

Agenda

u Overview

u Three supply chain-specific attacks

u Typosquatting

u Dependency confusion

u New: manifest confusion

u Making good component choices

u Identifying vulnerabilities in components

u Exercise

u Taxonomy of malicious commit attack vector

u Exercise

Oops! Accidental dependency vulnerability

3

Yingyaipumi/stock.adobe.com

Seventyfour i/stock.adobe.com

Code dependencies as an attack vector
Code dependencies as a weapon

4Siridhata/stock.adobe.com
Sergey Nivens /stock.adobe.com

https://stock.adobe.com/contributor/201376482/sergey-nivens?load_type=author&prev_url=detail

A6: Vulnerable and Outdated
Components

u Components used in an application
are outdated or have a
vulnerability

u At the root of software supply
chain attacks (think: Executive
Order 14028).

u Notable CWEs:
u 1104: Use of unmaintained third-

party components

u 1035: Using components with known
vulnerabilities

Source: OWASP.ORG| CC by 3.0
macrovector /stock.adobe.com

https://creativecommons.org/licenses/by/3.0/legalcode
https://stock.adobe.com/contributor/204220148/macrovector?load_type=author&prev_url=detail
http://stock.adobe.com/

#3 Choosing dependencies

Mindset shift required

“Some might argue that it’s almost too easy to introduce
a new dependency into your software systems. I’m
definitely guilty of this in my previous life as an engineer.
I remember pulling in random Python packages when
building my own websites and not putting any thought
into security. It should be fine if so many other people
are using the same package, right?”
 -- Kim Lewandowski, [Google Product Manager, founder
Chainguard] and every other developer alive

https://openssf.org/blog/2020/11/06/security-scorecards-for-open-source-projects/
Di Studio / stock.adobe.com

Transitive dependencies

* Snyk: State of Open Source Dependencies 2020

https://www.explainxkcd.com/wiki/index.php/2347:_Dependency

Which dependency has
the potential to cause
your project to crumble?

Your project
Your direct dependency

Ponder this … When you bring a
third-party component
into your project, it’s
like you are adding the
developers of that
component to your
team.
Do you trust them?

How about the
development teams
for all the transitive
dependencies?

Pixel-Shot /stock.adobe.com

https://stock.adobe.com/contributor/207588960/pixel-shot?load_type=author&prev_url=detail
http://stock.adobe.com/

Kind of mind blowing

Agenda

u Overview

u Three supply chain-specific attacks

u Typosquatting

u Dependency confusion

u New: manifest confusion

u Making good component choices

u Identifying vulnerabilities in components

u Exercise

u Taxonomy of malicious commit attack vector

u Exercise

Sonatype 2021 Supply Chain report

“brandjacking”

often combined with a malicious payload that executes
immediately using the built-in functionality of the
developer’s build tool.

Dependency Confusion

u Early build step – download source and dependencies from
approved source and artifact repos
u Anyone can freely upload code

u Install dependencies: Node has npm; Python’s pip uses PyPi;
RubyGems

u Typosquatting – leverages typo’d versions of popular package
names

u Dependency confusion: a software installer is tricked into a
pulling a malicious code file from a public repository instead
of the intended file from an internal repository

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://dhiyaneshgeek.github.io/web/security/2021/09/04/dependency-confusion/

Most common attack
2021

49% of organizations are
vulnerable

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Dependency Confusion - 2

u Public package contains higher version compared to private
package

u If package indexing not done properly, it will automatically
pull the higher version from the public registry

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://dhiyaneshgeek.github.io/web/security/2021/09/04/dependency-confusion/

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Dependency confusion - 3
u Finding private/internal packages (NPM)

u Look at the package.json file

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://dhiyaneshgeek.github.io/web/security/2021/09/04/dependency-confusion/

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Pinning dependencies

u Specify an exact version, under version
control

u Example:

u Npm lockfiles that list fix versions for all
dependencies (direct and transitive)

Manifest confusion (npm)
u occurs when there is an inconsistency between a package's

manifest information presented on the npm registry and the
actual 'package.json' file in the tarball of the published npm
package used when the package is installed.

https://www.bleepingcomputer.com/news/security/npm-ecosystem-at-risk-from-manifest-confusion-attacks/

Risks of Manifest Confusion

u installation of unknown dependencies that won’t
show upon security tools

u execution of unknown scripts, and

u potentially also downgrade attacks

u Needed action:

u Developers should manually read the package.json to
determine version numbers, what dependencies will be
installed, and what scripts will be executed

u Tools emerging

Agenda

u Overview

u Three supply chain-specific attacks

u Typosquatting

u Dependency confusion

u New: manifest confusion

u Making good component choices

u Identifying vulnerabilities in components

u Exercise

u Taxonomy of malicious commit attack vector

u Exercise

Potential weak links

Kirsty Pargeter
/stock.adobe.com

People are often the weak link

… may increase risk of supply chain attack

https://stock.adobe.com/contributor/22441/kirsty-pargeter?load_type=author&prev_url=detail
http://stock.adobe.com/

26

Expired
Maintainer

Domain
2,842 maintainers'
email domains are
expired.

Install Scripts

93.9% of malicious
packages use install
scripts.

Unmaintained
Packages

58.6% packages &
44.3% maintainers
are inactive.

Too many
Maintainers

421 popular
packages have
14,566
maintainers.

Too many
Contributors

45 maintainers
supervise 2,780
contributors in 23
popular packages.

Overloaded
Maintainers

4,743
maintainers own
52.4% packages
in npm.

(npm) Weak link signals

Scorecard

Dep.dev

2020 Sonotype State of the Software Supply Chain Security

Mean Time to Update (MTTU)

What other weak links can
you think of?

u If you want to make a good component
choice, what should be consider?

Agenda

u Overview

u Three supply chain-specific attacks

u Typosquatting

u Dependency confusion

u New: manifest confusion

u Making good component choices

u Identifying vulnerabilities in components

u Exercise

u Taxonomy of malicious commit attack vector

u Exercise

Software Component Analysis (SCA) Tools

and
more….

Software Component Analysis
(SCA)

https://www.vojtechruzicka.com/detecting-dependencies-known-vulnerabilities/

Imtiaz, Thorn, Williams, A comparative study of vulnerability reporting by software composition analysis tools, ESEM 2021

Imtiaz, Thorn, Williams, A comparative study of vulnerability reporting by software composition analysis tools, ESEM 2021

Overlap in finding same vulnerable
components

OWASP Juice Shop

u modern and sophisticated insecure web application

https://owasp.org/www-project-juice-shop/

OWASP Dependency Check

u Look at JuiceShop report:
https://tinyurl.com/3yev9jt2

u Pick a high severity/high confidence
vulnerability. Go to the National
Vulnerability Database (NVD) Common
Vulnerability Enumeration (CVE) and
summarize the vulnerability

https://tinyurl.com/3yev9jt2

Secure Repository Process Flow

Securing the Software Supply Chain: Recommended Practices for Developers

[Immutable]

Updating
vulnerable

dependencies

To update or not to update?

Boygostockphoto; stock.adobe.com

from deps.dev

Agenda

u Overview

u Three supply chain-specific attacks

u Typosquatting

u Dependency confusion

u New: manifest confusion

u Making good component choices

u Identifying vulnerabilities in components

u Exercise

u Taxonomy of malicious commit attack vector

u Exercise

Public

44th IEEE Symposium on Security and Privacy
May 22-25, 2023 – San Francisco, CA

SoK: Taxonomy of Attacks on
Open-Source Software Supply Chains

Piergiorgio Ladisa
SAP Security Research, Université de Rennes 1

piergiorgio.ladisa@sap.com,
piergiorgio.ladisa@irisa.fr

Henrik Plate
SAP Security Research*

henrik@endor.ai
*now at Endor Labs

Matias Martinez
Université Polytechnique Hauts-de-France*

matias.martinez@upc.edu
*now at Universitat Politècnica de Catalunya-BarcelonaTech

Olivier Barais
Université de Rennes 1, INRIA/IRISA

olivier.barais@irisa.fr

• Systematic Literature Review and
Grey Literature Review to collect
• All known attack vectors
• Associated safeguards
• Model the attack vectors in an attack

tree and map the safeguards to each
vector

• Conduct two user surveys to assess
both the taxonomy and utility/cost of
safeguards
• 17 experts
• 134 developers

Methodology

Results: Taxonomy of Open-Source
Software Supply Chain Attacks

Unique high-level
safeguards

Scientific and grey
literature references

33 370117
Unique attack
vectors

The proposed taxonomy :

• Attacker’s perspective

• Positively assessed by 17 experts

• The taxonomy, safeguards and references can be explored
online using the Risk Explorer for Software Supply Chain
[1]

[1] https://sap.github.io/risk-explorer-for-software-supply-chains/

https://sap.github.io/risk-explorer-for-software-supply-chains/

Risk Explorer for Software
Supply Chain

Check it out!

Available online and open-source: https://sap.github.io/risk-explorer-for-software-supply-chains/

https://sap.github.io/risk-explorer-for-software-supply-chains/

Exercise

u Go to the Risk Explorer

u https://sap.github.io/risk-explorer-for-software-supply-chains

u https://tinyurl.com/ymz63597

u Go three levels deep in the tree

u Summarize the attack and possible safeguards

https://sap.github.io/risk-explorer-for-software-supply-chains
https://tinyurl.com/ymz63597

Cost matters:
Safeguards Utility & Cost Assessment

Summary

u Attackers are increasingly using vulnerabilities
unintentionally injected into vulnerabilities or
are maliciously injecting vulnerabilities into
the supply chain

u We need to be smart about:
u Detecting vulnerabilities

u Updating components

u Making good component choices

u Implementing safeguards

