
Introduction to
Software Supply
Chain Security

Laurie Williams

Digital innovation depends on third-party
software

2

Innovation, competitive advantage

Sonatype finds 747% average increase in open
source supply chain attacks over the last three years.

Oops! Accidental dependency vulnerability

3

Yingyaipumi/stock.adobe.com
Seventyfour i/stock.adobe.com

Code dependencies as an attack vector
Code dependencies as a weapon

4Siridhata/stock.adobe.com
Sergey Nivens /stock.adobe.com

https://stock.adobe.com/contributor/201376482/sergey-nivens?load_type=author&prev_url=detail

Build infrastructure as an attack vector

5

Large Language Models (LLMs) as an attack
vector

6

Supply Chain as an (inter)national priority

7
Photo by Tabrez Syed on Unsplash

Software Bill of Materials (SBOM) Generation
Self-Attestation of Secure Development Practices

https://unsplash.com/@tabrez_syed?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/white-house?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Proposed European Union’s (EU’s) Cyber
Resilience Act

8
Photo by Tabrez Syed on Unsplash

https://unsplash.com/@tabrez_syed?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/white-house?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

But, what “should” we do?
And, what’s everyone else doing?

9

Doing secure software supply chain
science: an empirical study

Andrey Kiselev/stock.adobe.com

7 companies

“early adopter/
progressive/leader”

43 interviews
[more to come]
~1.5 hours/each

10

chrt2hrt / stock.adobe.com

“The Executive Order is forcing industry to adopt security practice that should have
been adopted 20 years ago. We want to actually be more secure, not just comply.”

Six Secure Software Supply Chain Summits (~60 people)

11

Chatham House Rules and other non-disclosures

I could tell you, but then
I’d have to kill you.

chrt2hrt / stock.adobe.com

12

What ”should” we DO about software supply chain security?

13

And also …

14

ENISA Cybersecurity ICT/OT Supply Chain Risk
Management Cycle

15
Photo by Tabrez Syed on Unsplash

https://unsplash.com/@tabrez_syed?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/white-house?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Vision: Proactive Software Supply Chain Risk
Management (P-SSCRM) framework

P-SSCRM is a holistic framework that industry uses to
proactively mitigate software supply chain risk through
guided adoption of tasks; and that supports assessment,
scoring, and comparison against industry peers,
standards, and guidelines.

16

P-SSCRM: The union of the frameworks

800-161

17

Layout of P-SSCRM (v0.3)

18

Mapping of “all the things” to “all the things”

Bi-directional
equivalence

Feedback
welcome!

19

P-SSCRM Framework (4 Groups, 15 Practices, 72 Tasks)
Governance (23
tasks)

Product (19 tasks) Environment (22
tasks)

Deployment (8
tasks)

Tasks that focus on the
organization and
measurement of a secure
software supply chain and of
policies for decision making,
accountability to third-party
obligations, and remaining
compliant with legal and
regulatory requirements.

Tasks to lead to the
deployment of a secure
product with minimal
vulnerabilities with
associated required
attestations and artifacts.

Tasks to protect the
confidentiality and
integrity of source code,
software components, and
the build infrastructure
from tampering and
unauthorized access.

Tasks for identifying,
analyzing, and addressing
vulnerabilities in
products.

● Perform compliance (5)
● Develop security policies

(6)
● Manage suppliers (5)
● Train (3)
● Assess and manage risk (4)

● Develop security
requirements (2)

● Build security in;
software security (5)

● Make good component
choices (5)

● Discover vulnerabilities
(4)

● Manage vulnerable
components (2)

● Safeguard artifact
integrity (6)

● Safeguard build
integrity (7)

● Secure environment
(9)

● Respond to
vulnerabilities (6)

● Monitor
intrusions/violations
(2)

20

P-SSCRM Framework - Lifecycle View

R

Task coverage with all the frameworks #[#unique]
Framework Governance Product Environment Deployment Total

P-SSCRM 23 19 22 8 72

EO / SSDF 11 14 4 5 34/34

Self-attestation 8 12 4 5 23/34 SSDF

BSIMM 17 [1] 14 2 4 37/125

SLSA 2 1 3 0 6/6

NIST 800-161 20 [5] 10 9 5 [1] 44/183

OWASP SCVS 1 5 5 0 11/11

S2C2F 3 7 [1] 3 2 [1] 15/15

CNCF SSC 4 6 13 [8] 1 [1] 24/24
22

Empiricism

Andrey Kiselev/stock.adobe.com

24

Where everybody’s at

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G.1 Compliance (5, 4)

G.2 Policy (6, 4)

G.3 Suppliers (5, 1)

G.4 Training (3, 1)

G.5 Risk (4, 2)

P.1 Sec Req (2, 2)

P.2 Soft Sec (5, 5)

P.3 Comp Cont Choice (5, 1)P.4 Discov Vuln (5, 5)

P.5 Comp Cont Mgmt (2, 1)

E.1 Artifact (6,2)

E.2 Build (7,1)

E.3 Devel Envir (10,1)

D.1 Disclosure (6, 5)

D.2 Monitor (2, 0)

P-SSCRM

All SSDF

25

Governance: perform compliance

u In general, organizational security requirements = defined software
development lifecycle (SDLC)

u Checking licenses (via Software Compositional Analysis (SCA tools) is
pretty mature, pre-dates this supply chain security mess

u Just starting to think about attestation and delivering provenance
and SBOM
u Most are experimenting with or are already producing SBOM

u Sharing, delivering … not so much 26

Governance: develop security policies

u Code review policy doesn’t always involve security
checking

u Current-day asset inventory is confusing and dynamic –
some don’t really understand what to do
u Containers

u Ephemeral environments

u Cloud resources

27

Governance: manage suppliers

u Vendor managers seem to be pretty good at imposing “all
the things” on the vendors

u Less mature at more than one person reviewing
contractors and contracts
u Exemplary – collaboration between contract manager and software

security

28

Governance: training

u Prevent, detect, respond

u Room for improving:
u Procedures in the event of a security emergency

u Some do table-top exercises and simulations

u Studying cyberthreat intelligence, attending conferences, etc., and
getting trends out to the organization

29

Governance: assess and manage risk

u Everybody knows they need to do these, the actual
processes are less structured, repeatable, objective

u Security metrics = hard problem
u Are we getting more secure? Less secure? Are the tasks working?

30

Product: develop security requirements

u Specifying product-specific security requirements less mature
than organizational (SDLC) requirements
u Architectural

u Memory-safe languages

u Sandboxing/isolation

u Modularity

u Security features

u Providing “customers” assurance your software is legit
u Such as signing code 31

Product: build security in

u “Getting there” with lots of proactive software security
practices

u Secure by default versus usability is the general
dilemma

u Sometimes in-house components are forgotten and
not scanned, can get stale, and not maintained

32

Product: manage component and container choices

Components > Containers

(second to last)

33

Product: discover vulnerabilities

u Prevent, detect, respond

u Code review …. “for every PR”, but unsure of how enforced in reality

u Have lots of tools, but run regularly and vulnerabilities fixed, less so

u External pen test, bug bounty – yes, internal red team, testing less

u Review of third-party compliance to contract lacking

u Review of “are open source components abandoned” type of checks
lacking

u Relying on SCA tools to find vulnerabilities 34

Product: manage vulnerable components

u Not really doing anything with SBOM (or real plans to)

u Dependency update = drinking from the firehose
u Not a systematic process for handling this overwhelm

35

Environment: safeguard artifact integrity

u Advanced authentication maturing

u Lack of security checks enforced in branching process
u Especially with mono repo

u Security risks of end-of-life systems, program, assets
u Just added to P-SSCRM, so low sample size

u Not a task in any of the originating frameworks
36

Environment: safeguard build integrity

u Automated release policy verification could be better
u “as code”, templated, standardized

u Verifying dependencies & environment on build could be
better

u Don’t utilize compiler, interpreter, such as to fail rather
than give a security warning

u Ephemeral builds pretty good

u Hermetic, parameter-less builds emerging 37

Environment: secure software development environment

u Prevent, detect, respond

u RBAC: maybe too widespread “everyone can read
everything” and not enough least privilege

u Could use more baseline configuration, use of ephemeral
credentials 38

Deployment: respond to/disclose vulnerabilities

u Prevent, detect, respond

u Emergency fix (from S2C2F) = what to do if the component supplier won’t fix?

u Could be more proactive eradication

u One company said “… if we don’t, the bug bounty people will just keep finding more
of the same.”

39

Deployment: monitor intrusions/violations

u Solarwind, Codecov … need to get better at monitoring for
build process intrusions

40

Top 10 Tasks (1G, 1P, 5E, 3D)

41

Bottom 10 Tasks (4G, 3P, 3E, 0D)

42

Summary
u Software supply chain attacks are on the rise
u Attack vectors:

u Accidentally-injected vulnerabilities

u Maliciously-injected vulnerabilities

u Attacks through the build infrastructure

u [Probably emerging] LLM-generated code

u International regulation is imposing software security
practices on development teams

u Liability for insecure code is emerging
u Practices to protect from vulnerable components are not

being adopted as fast as probably needed.
u We [software engineering researchers] need to make secure

development less disruptive to a development workflow 43

