
Security Testing of Mass Assignment
Vulnerabilities in RESTful APIs

1

Mariano Ceccato
mariano.ceccato@univr.it

Davide Corradini, Michele Pasqua

What is a Web API or REST API?

REST API

2

C
R
U
D

Create
Read
Update
Delete

(HTTP)

Is Web APIs implementation correct?
• Technology: HTTP network messages to test them
• Interaction: Need to mock other external services
• Very abstract: Not guided by a Graphical User Interface
• What scenarios to test: Intended designed Vs

unintended erroneous
• What data to use?

3

REST API

REST API

REST API

Presentation Topic
• Security Testing of Mass Assignment Vulnerabilities in

RESTful APIs

• Problems:
• Different programming languages/frameworks
• No source code access
• Dynamically deployed/undeployed component (microservices)

• Formal service definition as Open API Specification (OAS)

4

Our solution:
Black-box testing of Web APIs based on their interface

Technical background

5

REST APIs
• API: Application Programming Interface
• Interface that offers services to other pieces of software

• REST: REpresentational State Transfer
• Architectural style for distributed hypermedia systems
• An API must adhere to this architectural style in order to be

considered a REST API

6

REST API principles
1. Uniform Interface

• Identification of resources
• Manipulation of resources through representations
• Self-descriptive messages

2. Client-server
3. Stateless

• Requests must provide all the necessary information for processing the
corresponding responses

4. Cacheable
5. Layered system

• Allows a layered/hierarchical architecture
6. Code on demand (optional)

• Allows to download code in the form of applets or scripts

7

The HTTP protocol
• Hypertext Transfer Protocol
• Used in the web to transfer web pages, images, and files

• Application layer protocol
• Request-response protocol in the client-server model
• Stateless

8

A typical HTTP web interaction 9

Client (browser) Web server

GET /login

200 OK <html>…</html>

POST /auth
password=123456

200 OK <html>…</html>

HTTP request 10

POST /authentication HTTP/1.1
Host: univr.it
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Content-Length: 15

password=123456

Method/Verb

Body

Path Protocol version

Headers

HTTP methods
• GET: requests a representation of the specified resource
• POST: submits an entity to the specified resource, often

causing a change in state or side effects on the server
• PUT: replaces all current representations of the target

resource with the request payload
• DELETE: deletes the specified resource

• Other, less used, methods: PATCH, HEAD, TRACE, OPTION,
CONNECT

11

HTTP response 12

HTTP/1.1 200 OK
Date: Thu, 11 Nov 2021 17:13:27 GMT
Content-Type: text/html
Content-Length: 16
Connection: keep-alive

<html> … </html>

Protocol version
Status code

Headers

Body

Status message

HTTP response status code 13

JSON
• JavaScript Object Notation (it is not tied to JavaScript)
• Lightweight data-interchange format
• Supports objects, arrays, strings, numbers, booleans and nulls.

• Example: university employee

14

{
"firstName": "Mariano",
"lastName": "Ceccato",
"occupation": "Professor",
"courses": [
 "Software engineering",
 "IoT security"
]

}

The Spotify REST API 15

Search

Retriev
e artist

Retriev
e song

Retriev
e

album

Edit
playlist

Create
playlist

Delete
playlist

https://developer.spotify.com/documentation/web-api/

https://developer.spotify.com/documentation/web-api/

A REST HTTP interaction 16

Client (Spotify app) Web server

GET /album/4eeb650baa1

200 OK {“artist”: “Pink Floyd”, …}

POST /user/mariano/playlist { … }

201 Created

• Search

• Get album info

Protocol

Some operations of the Spotify REST API 17

GET https://api.spotify.com/v1/search?q=Pink Floyd&type=artist

GET https://api.spotify.com/v1/album/{id}

Host/Server

Base path

Path Query Parameters

Path param
eter

Protocol Host/Server
Base path

Path

M
ethod

M
ethod

The OpenAPI specification
• Formal definition of the REST API
• JSON or YAML format
• It describes:

• Information about the REST service (servers, maintainers, etc…)
• Available paths/endpoints and accepted HTTP methods

• The pair <HTTP method, Path> is known as Operation
• Accepted parameters (types, bounds, example values, etc.)
• Response formats in multiple scenarios (e.g., successful response, error

response)
• Enables OpenAPI based applications, e.g.,:

• Editors (https://editor.swagger.io/)
• Swagger UI: produces an interactive GUI with the documentation (e.g.,

https://petstore.swagger.io/)
• Server and client generation
• RestTestGen: automated test case generation

18

https://editor.swagger.io/
https://petstore.swagger.io/

The Spotify OpenAPI specification 19

https://api.apis.guru/v2/specs/spotify.com/2021.8.15/openapi.json

Server exposing the REST API

Location of the documentation

{
 "openapi": "3.0.1",
 "servers": [{"url": "https://api.spotify.com/v1"}],
 "info": {
 "title": "Spotify Web API",
 "version": "2021.8.15",
 },
 "externalDocs": {
 "description": "Find more info …",
 "url": "https://developer.spotify.com/document…"
 },
 …

https://api.apis.guru/v2/specs/spotify.com/2021.8.15/openapi.json

The Spotify OpenAPI specification 20

The path
The HTTP method

Parameters, including their
location, name, schema
and if they are mandatory

Fo
rm

at
 o

f t
he

 re
sp

on
se

$r
ef

 is
 a

 re
fe

re
nc

e
to

 a
 s

ch
em

a
de

fin
iti

on

"paths": {
 "/search": {
 "get": {
 "description": "Search…",
 "operationId": "endpoint-search",
 "parameters": [{
 "in": "query",
 "name": "q",
 "required": true,
 "schema": {"type": "string"}
 }],
 "responses": {
 "200": {
 "content": {
 "application/json": {
 "schema": {
 "$ref":"#/components/schemas/SearchResponseObject"
 }
 }
 },
 }
 …

https://api.apis.guru/v2/specs/spotify.com/2021.8.15/openapi.json

https://api.apis.guru/v2/specs/spotify.com/2021.8.15/openapi.json

Postman
• Tool for API testing
• Manual writing of test cases / requests
• Can automate test execution

• Available as desktop app or web app
• Web app does not support requests to local networks

22

Postman 23

Method

Input
parameters

Response

URL
Send
request
button

RestTestGen

24

REST APIs are everywhere 25

REST API

REST API

REST API automated testing
• Several approaches

• Evolutionary algorithms
• Model based
• Ontology
• Deep learning

• Research tools implemented
from scratch
• Very limited code reuse

26

Approach overview 27

Swagger Operation
dependency

graph

Nominal tests Error tests

REST API
under test

rest

rest

Operation Dependency 28

/pets:
 get:
 summary: List all pets
 operationId: getPets
 tags:
 - pets

responses:
 '200':
 description: PetIds
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 petId:
 type: integer

/pets/{petId}:
 get:
 summary: Info for a specific pet
 operationId: getPetById
 tags:
 - pets

parameters:
 - name: petId
 in: path
 required: true
 schema:
 type: string

ou
tp

ut

in
pu

t
getPetById getPets

petId

Case mismatch
petID, petid, petId

Id completion
/getPet ➠ Pet
pet.id ➠ petId

Stemming
pets ➠ pet

Operation Testing Order 29

C

D

E

B

A

C E
1. head

2. post

3. get

4. put/patch

5. delete

• Leaf nodes are selected (no outgoing edges)
• No input
• Input is not available on operations output

• To maximize the likelihood of a successful
test, resources might require to be in a
certain status

• Leaf nodes are order based on the CRUD
semantics

Operation Testing Order 30

D

B

A

• Tested operations are removed
from the graph
• New operations become leaf nodes

and can now be tested
B The order in which operations are

tested can not be precomputed,
because it depends on what
operations we succeed in testing

Input Value Generation
• Based on response dictionary
• Map (name→values) of data observed at testing time, while

testing previous operations
• Exact name match petId ✓ petId
• Concatenation of object + field pet.id ✓ petId
• Name edit distance < threshold petsId ✓ petId
• Key is a substring myPetId ✓ petId

• Based on swagger definition
• Enum, example, default values
• Random values (compatible with constraints)

31

HTTP Status Code Oracle
• 2xx means correct execution
• 200: ok
• 201: successful resource creation

• 4xx means error that is correctly handled
• 400: bad request
• 404: not found

• 5xx means error
• 500: server crash

32

✓

✗
?

Schema Validation Oracle 33

responses:
 '200':
 description: Expected response to a valid request
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Pet"

components:
 schemas:
 Pet:
 type: object
 required:
 - id
 - name
 properties:
 id:
 type: integer
 format: int64
 name:
 type: string
 tag:
 type: string

{
 "id": 1,
 "name": "doggy",
 "tag": "dog"
}

{
 "id": 1,
 "name": "doggy"
}

{
 "id": 1,
 "name": "doggy",
 "tag": 5
}

✓ ✗
✗

Approach overview 34

Swagger Operation
dependency

graph

Nominal tests Error tests

REST API
under test

rest

rest

Testing of Error Cases
• Analyses how an API behaves

when it is given wrong input
data
• Mutation operators
• Remove a required input field
• Change field type
• Change field value

35

Nominal tests Error tests

REST API
under test

rest

HTTP Status Code Oracle
• 2xx means correct execution
• 200: ok
• 201: successful resource creation

• 4xx means error that is correctly handled
• 400: bad request
• 404: not found

• 5xx means error
• 500: server crash

36

✗

✗
?

Experimental Validation
Research questions
• Is the Nominal Tester module effective in generating test cases?
• Is the Error Tester module effective in generating test cases?

Case studies
• 87 REST APIs listed in the website API.guru (2.6k operations)

• Filtering out those with authentication or not responding

Procedure
• Nominal tester for 10 minutes per REST API
• Test cases with 2xx status code are mutated
• Error tester for 10 minutes per REST API

• Nfuzz=5
• Response dictionary threshold=1

37

Results
APIs Operations

Total 87 2,612
Status code 2xx 62 625
Status code 5xx 20 151
Validation error 66 1,733

38

Mutation operator Mutants Status code 2xx Status code 5xx
Missing required 459 283 7
Wrong input type 707 511 16
Constraint violation 119 68 11
Total 1,285 864 23

Discover RestTestGen
• Reach me during after this presentation
• GitHub ⟶ https://github.com/SeUniVr/RestTestGen
• Contact me ⟶ mariano.ceccato@univr.it

39

https://github.com/SeUniVr/RestTestGen
mailto:davide.corradini@univr.it

Test coverage

40

Problem definition
• REST APIs are developed with different languages,

frameworks, and closed-source libraries
• White-box testing approaches difficult to apply

• Approaches are available to test REST API with a black-
box viewpoint

41

Black-box coverage metrics for
REST APIs

Architecture of Restats 42

Data Collection
module

Metrics
Computation

module
Network logger

(Burp Suite)
HTTP
dumps

Traffic
database

REST API
under test

Testing
tool/framework

Metrics
report

OpenAPI
Swagger

Restats

Metrics Computation module
Input coverage metrics
• Path coverage
• Operation coverage
• Parameter coverage
• Parameter value coverage
• Request content-type coverage

Output coverage metrics
• Status code class coverage
• Status code coverage
• Response content-type

coverage

43

Metrics are computed as defined by Martin-Lopez et al. [12], with adaptations in some cases
to make them operative.
[12] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test coverage criteria for RESTful web APIs,” in Proceedings of the 10th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection, and Evaluation, 2019, pp. 15–21.

1. Execute test cases 44

• Manually (e.g.,
browser)

• Using testing tools
(e.g., Postman)

• Using advanced tools
that automatically
generates test cases
(e.g., RestTestGen)

2. Record the network traffic 45

Restats can help 48

ResearchersStakeholdersDevelopers
Development

Testing
Evaluation Evaluation

Comparison

GitHub repository:
https://github.com/SeUniVr/restats

https://github.com/SeUniVr/restats

Object tools
RestTestGen [5]
• Operation

Dependency Graph

RESTler [6]
• Full enumeration of

sequences

bBOXRT [7]
• Large collection of

mutation operators

RESTest [8]
• Inter-parameter

dependencies

49

[5] E. Viglianisi, M. Dallago, and M. Ceccato, “RESTTESTGEN: Automated black-box testing of RESTful APIs,” in 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), 2020, pp. 142–152
[6] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST API fuzzing,” in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE ’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 748–758.
[7] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A black box tool for robustness testing of REST services,” IEEE Access, vol. 9, pp. 24 738–24 754, 2021.
[8] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Black-box constraint-based testing of RESTful web APIs,” in Service-Oriented Computing - 18th
International Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14-17, 2020, Proceedings, ser. Lecture Notes in Computer Science, E. Kafeza,
B. Benatallah, F. Martinelli, H. Hacid, A. Bouguettaya, and H. Motahari, Eds., vol. 12571. Springer, 2020, pp. 459–475.

REST APIs case studies

Case Study Language Framework Endpoints Operations # of lines
01-Slim PHP Slim 9 18 8,566
02-Airline Java Spring Boot 12 30 3,859
03-Streaming Java Spring Boot 5 5 1,780
04-Petclinic Java Spring Boot 17 47 8,550
05-Toggle ASP.NET .NET Core 8 16 2,363
06-Problems Java Spring Boot 5 9 2,174
07-Products Java Spring Boot 6 14 3,451
08-Widgets Go - 4 14 1,370
09-Safrs Python Flask 6 18 2,787
10-Realworld PHP Laravel 11 19 5,278
11-Crud Node.js Express 1 4 5,106
12-Order PHP Laravel 2 3 3,359
13-Users TypeScript Express 2 5 805
14-Scheduler Node.js Express 26 40 24,044

50

• REST APIs whose state can
be reset after each test
session
• REST APIs that comes with

an OpenAPI specification
• REST APIs that are

representative of real-world
REST APIs

Research questions
1. How robust are automated RESTful APIs test-case

generation tools?

2. What is the coverage of the test suites emitted by
automated RESTful APIs test-case generation tools?

51

Case study RestTestGen RESTler bBOXRT RESTest

01-Slim ✔ ✔ ❌ ✔

02-Airline ❌ ✔ ❌ ❌

03-Streaming ❌ ✔ ❌ ❌

04-Petclinic ✔ ✔ ❌ ❌

05-Toggle ✔ ✔ ✔ ❌

06-Problems ✔ ✔ ❌ ❌

07-Products ✔ ✔ ✔ ❌

08-Widgets ✔ ✔ ✔ ✔

09-Safrs ✔ ✔ ✔ ❌

10-Realworld ✔ ✔ ✔ ❌

11-Crud ✔ ✔ ✔ ❌

12-Order ✔ ✔ ✔ ❌

13-Users ✔ ✔ ✔ ❌

14-Scheduler ❌ ✔ ❌ ❌

Total 11 14 8 2

Results: robustness 52

Results: coverage 53

Coverage metric RestTestGen RESTler bBOXRT Draw

Path 1 0 0 7

Operation 1 3 0 4

Parameter 1 0 0 4

Parameter value 1 0 2 0

Req. content-type 2 1 0 4

Status code class 4 4 0 0

Status code 5 3 0 0

Resp. content-type 3 2 0 2

Number case studies for which a tool performed better than the others.

Considerations
• One sequence Vs many sequences
• RestTestGen when time and resources are limited
• RESTler when a lot of time and resources are available

• bBOXRT is great for fault detection
• High score for parameter value metric

• RESTest is still not mature for real-world REST APIs
• Inter-parameter dependencies can be helpful in testing

54

Testing Mass Assignment
Vulnerabilties

55

Auto-binding 56

Object automatically instantiated
from HTTP request

POST /user/register
Content-Type: application/json

{
"email": "mariano@univr.it",
"username": "mariano",
"password": "123456"

}

HTTP request

User
- email : String
- username : String
- password : String
- admin : boolean

User
- email : String = "mariano@univr.it"
- username : String = "mariano"
- password : String = "123456"
- admin : boolean = false

Mass assignment vulnerability 57

POST /user/register
Host: example.com

{
"email": "mariano@univr.it",
"username": "mariano",
"password": "123456",
"admin": true

}
HTTP request

Object automatically instantiated from HTTP request

User
- email : String = "mariano@univr.it"
- username : String = "mariano"
- password : String = "123456"
- admin : boolean = true

Problem definition
• Mass assignment vulnerability is common in REST APIs1

58

ü Automatic testing of REST API for
mass assignment vulnerabilities
• Black-box perspective

1. https://owasp.org/www-project-api-security/

Our solution:

https://owasp.org/www-project-api-security/

Approach 59

Automated generation of
security test cases

2.Static analysis of
specification: identification

of read-only fields

1.

Security testing oracle:
vulnerability exploitation

detection

3.

𝑅 = {𝑒𝑚𝑎𝑖𝑙, 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 𝑎𝑑𝑚𝑖𝑛}
𝑊 = {𝑒𝑚𝑎𝑖𝑙, 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑}
𝑅𝑂 = 𝑅 −𝑊 = {𝑎𝑑𝑚𝑖𝑛}

1. Identification of read-only fields 60

POST /user/register
Input data email

username
password

Output data -

GET /user/{username}
Input data username
Output data email

username
password
adminPOST /book

Input data title
author

Output data id
title
author

C

R

Notation
• C create: POST
• R read: GET
• U update: PUT
• D delete: DELETE

61

Notation
• CT create a resource of type T
• RT read a resource of type T
• UT update a resource of type T
• DT delete a resource of type T

62

Notation
• C+f create a resource adding the read-only input f
• U+f update a resource adding the read-only input f

63

Notation
• (D,R)? These operations are optional

64

𝐶!
"# , 𝑅! , 𝐷! , 𝑅! ?

2. Test case generation 65

𝐶! , 𝑅! , 𝑈!
"# , 𝑅! , 𝐷! , 𝑅! ?

Abstract test templates

𝐶!
"# , 𝑅! , 𝐷! , 𝑅!

2. Test case generation 66

Identification of resource-id parameters

bookId
username

password

3. Vulnerability exploitation detection 67

𝐶!
"# , 𝑅!, 𝐷!, 𝑅!

HTTP/1.1 200 OK

{
"email": "mariano@univr.it",
"username": "mariano",
"password": "123456",
"admin": true

}
HTTP response

POST /user/register
Host: example.com

{
"email": "mariano@univr.it",
"username": "mariano",
"password": "123456",
"admin": true

}
HTTP request Field is vulnerable!

Evaluation
• RQ1: What is the accuracy of the automated

identification of operations CRUD semantics, resource
types, and resource-id parameters?
• RQ2: What is the accuracy in revealing mass

assignment vulnerabilities in REST APIs?
• RQ3: Does the proposed approach to detect mass

assignment vulnerabilities scale to large REST APIs?

68

Benchmark APIs
• Open-source
• Not read-only
• With OpenAPI specification

69

API Prog. Lang. REST framework No. Of Operations No. Of Vulnerabilities
VAmPI Python Flask 12 1
OWASP Java Spring 10 4
Toggle ASP.NET .NET Code 16 2
Bookstore Java Spring 5 1
CRUD JavaScript Express 4 2

Results: accuracy of CRUD extraction,
clustering, and resource-id identification 70

Results: accuracy of vulnerability
detection 71

Results: scalability of the approach 72

