
Making Software More Secure and
Security Engineers’ Lives Easier

The 9th International School on Software Engineering (ISE 2023)

July 10-12, 2023

Rui Abreu (U.Porto)
@rmaranhao

Outline
About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritization

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Outline
About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritization

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Why focusing on security (during your PhD)?
📈 The number of new vulnerabilities is growing over time and it takes a long time to
patch vulnerabilities regardless of their severity.

👩💻 Lack of security experts (gap of 3 million jobs globally).

🙅 Adoption is still low (high false positive rates, lack of education and training, lack of
actionability, poor usability).

🥴 Knowledge is not structured, updated and centralised.

⚖ No fair comparison between tools (difficult to trust and know how they fair).

💸 Costs associated with software vulnerabilities.

@rmaranhao

Research Overview
Software Vulnerability Data

Static Application Security Testing Tools

Augmentation Compreenshion Patch
Documentation

Infrastructure-as-
code scripts

(Puppet)

Artificial Intelligence

Maintainable Security

Alert Prioritization

Risk Analysis Impact of Patches Tooling Collection Tooling
Characterisation

Framework for SVD Explainability and
Probing Analysis

Software
Vulnerabilities

Impact of
Different Data

Attributes in ML
models

@rmaranhao

Outline
About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Systematic Survey on SAST Tools

Two of the main issues for the low adoption of SAST tools are:

1) the lack of complete documentation (approaches, performance rates, scalability,
coverage);

2) the lack of structured, updated and centralised knowledge.

(On the road to improve static analyzers adoption for security)

SAST tools: Static Application Security Testing tools (aka, static analysers for
security).

@rmaranhao

Systematic Survey on SAST Tools

In order to get a better overview of the SAST scope, we ran a systematic survey on the
topic to answer the following research questions:

(On the road to improve static analyzers adoption for security)

RQ1: What are the underlying techniques used by SASTs?

RQ2: Which classes of vulnerabilities and programming languages are covered by the existing SASTs?

RQ3: Are the research outputs and codebases of SASTs publicly available?

RQ4: What conclusions can we draw on the performance of SASTs from the results presented in the selected
work?

@rmaranhao

RQ1: What are the underlying techniques used by SASTs?

• Pattern-based//AST Matchers
RATS, Flawfinder, ITS4, Bandit, SLIC/ACID (> 40 tools)

• Flow Analysis (Control-, Data- and Taint
analysis)
Checkmarx, FindBugs, Polyspace Bug Finder, WAP, Pixy (> 40 tools)

• Abstract Interpretation
Astrée PolySpace Code Prover, Polyspace for Ada (> 10 tools)

• Model Checking
MOPS, ESBMC, CBMC, JBMC (approx. 10 tools)

• Symbolic Execution
Infer, PVS-Studio (approx. 10 tools)

• Hybrid Solutions (Static and Dynamic Analysis)
appScreener, CodeDX, PT Application Inspector, Veracode, Sparrow,
thunderscan (11 tools)

• Machine Learning
Static Reviewer, VulDeePecker, DeepCode, TAP (4 tools)

• Source Code Query Tools
CodeQL, CppDepend (2 tools)

@rmaranhao

RQ2: Which classes of vulnerabilities and programming languages are covered by the existing SASTs?

Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors

RQ3: Are the research outputs and codebases of SASTs publicly available?

For approximately 40% (58/145) of the SASTs, the codebase is not available which
makes their understanding, usage and extensibility more difficult.

We also collected the license of each tool. Only 6 tools did not have any type of
license. More than 50% of the tools have an open-source license, i.e., tools than can
usually be used freely in research and in the industry

RQ4: What conclusions can we draw on the performance of SASTs from
the results presented in the selected work?

Only 23 empirical validations were found for 23 tools. Overall, all tools reported False
Positives.

There is a preference for validating the tools with real data instead of artificial. However,
empirical validations with real vulnerabilities are rare due to the low amounts of data—
which sometimes may not be enough to assess the real performance of the tool.
Datasets with more real data is needed to fairly assess the performance of SASTs.

@rmaranhao

Systematic Survey on SAST Tools
(On the road to improve static analyzers adoption for security)

145 SASTs

231 academic
papers

Systematic Survey on SAST Tools
⚠ SASTs may disrupt the team’s productivity.

⚠ Not Actionable.

⚠ Poor Usability.

⚠ Lack of structured and organised knowledge.

⚠ Difficult to measure the coverage of the field.

⚠ Scalability Issues.

⚠ Language and pattern dependent.

⚠ Better tools for security are wanted.

🆕 Artificial Intelligence has the potential to shift security left but still provides untrustworthy results.

🆕 Risk Analysis based on code changes (use static analysis to locate the problem and collect features).

🆕 New types of software (quantum, blockchain, infrastructure-as-code scripts).

(On the road to improve static analyzers adoption for security)

The problem we are trying to fix with this
collection of tools and papers.

@rmaranhao

Outline
About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Software Vulnerability Detection + AI

We spent months performing experiments with deep learning algorithms like Code2vec
and CodeBERT for vulnerabilities in JavaScript code (collected from advisory
databases such as OSV and NVD).

Scrappers: https://github.com/TQRG/security-patches-dataset

Many studies between 2017 and 2021 reported accuracy > 90% for the software
vulnerability task with AI.

But the reality for us was a bit different. We could not even reach an accuracy of
70%.

(Promises to shift security left in the SDLC)

@rmaranhao

Software Vulnerability Detection + AI

Microsoft maintains a leaderboard with
results for different tasks and different
models trained and test on CodeXGLUE (a
C/C++ dataset).

Our results with the new dataset were
again below 70%.

We submitted our results with code2vec
which were validated by the microsoft
team.

(Promises to shift security left in the SDLC)

D Coimbra, S Reis, R Abreu, C Păsăreanu, H Erdogmus. On using distributed representations of source code for the detection of

C security vulnerabilities. International Workshop on Principles of Diagnosis (DX)

@rmaranhao

Software Vulnerability Detection + AI

We looked into the datasets of papers published in the software vulnerability + AI scope
and we started to see a trend:

!! Lots of duplicates between the training and testing datasets that led to inflated results.

Which was later reported in the paper “Deep learning based vulnerability detection: Are we
there yet?” by S. Chakraborty et al.

(Promises to shift security left in the SDLC)

@rmaranhao

Software Vulnerability Detection + AI
(Promises to shift security left in the SDLC)

https://github.com/TQRG/tenet @rmaranhao

Software Vulnerability Detection + AI
(Promises to shift security left in the SDLC)

After spending time trying to fix the core problem with AI, we shifted our efforts to
explainability and probing analysis.

“How different data attributes impact traditional machine learning classifiers?” Sampling
Strategy, Distribution between classes, Granularity, Project Diversity, Multiplicity of
Software Vulnerabilities

“BERT-based Models for Vulnerability Detection: Looking Beyond Validation Metrics”
Probing analysis to check if BERT-models encode semantic (unused vars, tainted vars,
vuln code) syntax (function, loop, conditional) and structural (complexity) information in
code samples at function level for different CWEs.

@rmaranhao

Outline
About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Best Practices For Patch Documentation

Many works have reported that commit metadata (including commit messages) are
not enough to classify security-related commits.

One study reported that it could only extract security-related words from 38% of the
commit messages; however, it uses a dataset of silent fixes (which naturally have more
cryptic messages).

Yet, none of the approaches looked carefully into the key information that could be
extracted from commit messages.

Therefore, we performed an analysis of security commit messages and best practices
application by security engineers.

(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with AI and SASTs validation and comparison.)

@rmaranhao

Best Practices For Patch Documentation

We used Named Entity Recognition (NER), a natural language processing approach, to
identify and extract key information, called entities, from unstructured data (in this case,
text).

An entity can be any word or bag of words that refers to the same entity category. For
instance, different names of companies “Netflix”, “Google” or “Apple” are entities that
belong to the Company category.

(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with AI and SASTs validation and comparison.)

We designed a set of category entities that
we tried to extract from commit messages.

Best Practices For Patch Documentation
(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with AI and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches?

Best Practices For Patch Documentation
(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with AI and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches?

To extract the entities for each category, we
used a Python library called Spacy—which
provides end-to-end pipelines for several
natural language processing tasks (e.g.,
NER).

We built our own customized NER pipeline
for security commit messages.

Best Practices For Patch Documentation
(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with AI and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches? Analysis of 11036 commit messages.

Best Practices For Patch Documentation
(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with AI and SASTs validation and comparison.)

Do security engineers follow best practices to write security commit messages?

C1 4.10% of commit messages follow the conventional commits
convention “(scope):” using prefixes such as “patch” or “fix”

C2
100% of commit messages have a one line subject/header. But
only 4288 out of 11036 (38.85%) headers have security-related
words (SECWORD) and reflect an action (ACTION).

C3 59.91% of commit messages have a body but only 36.53%
have SECWORDS.

C4 8.4% of commit messages were signed-off-by.

C5 3.33% of commit messages include the reviewer contact.

C6 25.42% of commit messages include references to issues.

C7 1.78% of commit messages have references to bug trackers.

Best Practices For Patch Documentation
(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with AI and SASTs validation and comparison.)

Do security engineers follow best practices to write security commit messages?

C1 4.10% of commit messages follow the conventional commits
convention “(scope):” using prefixes such as “patch” or “fix”

C2
100% of commit messages have a one line subject/header. But
only 4288 out of 11036 (38.85%) headers have security-related
words (SECWORD) and reflect an action (ACTION).

C3 59.91% of commit messages have a body but only 36.53%
have SECWORDS.

C4 8.4% of commit messages were signed-off-by.

C5 3.33% of commit messages include the reviewer contact.

C6 25.42% of commit messages include references to issues.

C7 1.78% of commit messages have references to bug trackers.

SECOM
A convention for security commit messages

Validated with the Open-Source Security
Foundation (OpenSSF)
Feedback received from the security community suggests that they see
value in SECOM and would like to see it evolve into a standard practice—5
out of the 7 participants responded “Yes” to “Would you use this or a similar
convention as standard practice in your own work or advocate its use in
your team?”, the remaining two participants answered “Unsure”.

Convention has been mentioned at BlackHat and Defcon by a security
researcher that is already using it to patch thousands of vulnerabilities.

https://tqrg.github.io/secom/

SECOM
(Fields)

SECOM
(Compliance Checklist)

SECOMlint
(Compliance Checker)
https://tqrg.github.io/secomlint

Future Work
- Explore GPT-3 to produce
suggestions/recommendations
based on the code—to shorten
the burden of a new best
practice.

Work in Progress
Improved annotation with an annotation tool for natural
language called Prodigy.

Trained a transformed based model for named entity
recognition based on the data we extracted. Initial acc
= 79%

Prodigy can access the uncertainty of each prediction.
When it finds a case with high uncertainty, it presents
the message and entities to the user for validation.

Active Learning - Different iterations of the model
with new data (imp. of 5% after 4 iterations of 100
messages each)

Not a real case; just a use case provided

by the websiteFuture Work Text Classification + NER

Outline
About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

🐞🔓 Nowadays, many companies use static analysis tools (SASTs) to automate
the detection of bugs and potential security violations.

☹ SASTs are known for their high false positive rates — general problem!

🤯 Extensive lists of warnings disrupt the developers’ productivity since they are
expected to judge each warning on their own, many times with poor knowledge
and experience — time waster!

🚩 But, given that verification problems are undecidable, reporting false positive
warnings is inevitable.

False Positives Prioritisation and Filtration
(Helping with triage of the alerts outputted by SASTs tools)

@rmaranhao

False Positives Prioritization and Filtration
(Helping with triage of the alerts provided by SASTs tools)
😵💫 Infer produces a list of warnings without any specific order or priority assigned. Alert prioritisation or post
processing may soften the impact of false positives in tool adoption.

False Positives Prioritisation and Filtration

@rmaranhao

False Positives Prioritization and Filtration
(Helping with triage of the alerts provided by SASTs tools)
✅ Our approach orders the list of warnings by the probability of being a False Positive.

False Positives Prioritisation and Filtration

@rmaranhao

False Positives Prioritization and Filtration
(Helping with triage of the alerts provided by SASTs tools)
False Positives Prioritisation and Filtration

Collection Classification

@rmaranhao

False Positives Prioritization and Filtration
(Helping with triage of the alerts provided by SASTs tools)
We compared different deep learning architectures (LSTM, BERT, CodeBERT and GraphCodeBERT).

False Positives Prioritisation and Filtration

Model Acc
LSTM 60.23
BERT 70.20

CodeBERT 74.26

GraphCodeBERT 77.23

@rmaranhao

Training Configuration (k-fold cross validation)

Evaluating machine learning algorithms requires data separation into a:
Training set, used to estimate model parameters;
Test set, used to evaluate the classifier’s performance.

We use the k-fold cross-validation technique:
- The dataset is split in k sets.
- One by one, is used for testing and the remaining k-1 other sets are used for
training. This process is repeated k times for each set.

We performed a 5-fold cross validation
for both scenarios. Each execution was
performed 5 times with different random
seeds (5-fold cross validation x 5 random
seeds = 25 runs).

Why 25 runs? To check the consistency
of the results.

Validation Fold
Training Fold

Perf1

Perf2

Perf3

Perf4

Perf5

5
ite

ra
tio

ns
 (5

-fo
ld

s)
@rmaranhao

False Positives Prioritization and Filtration
(Helping with triage of the alerts provided by SASTs tools)
We use a softmax layer to calculates the likelihood of a sample being a true positive or false positive [x, y]
where x is the likelihood of being a true positive and y the likelihood of being a false positive — we use y to
organize the list of warnings.

False Positives Prioritisation and Filtration

@rmaranhao

False Positive Probability Prediction
Infer’s original output (First 10 warnings)

Output Prioritized (First 10 warnings)

False Positive Probability Prediction
Infer’s original output (First 10 warnings)

Output Prioritized (First 10 warnings)

List is in ascending
order of being a false

positive, i.e., true
positives appear in the

top of the list.

False Positive Probability Prediction
Infer’s original output (First 10 warnings)

Output Prioritized (First 10 warnings)

List is in ascending
order of being a false

positive, i.e., true
positives appear in the

top of the list.

If we wanted to make FP
filtration, could we simply remove
false positives from the list? Not

quite because of
misclassifications.

Can we use uncertainty to remove false positives?

Uncertainty refers to the lack of confidence for each output of a machine learning algorithm.

How do we calculate it so far?
Using a MonteCarlo dropout approach.

- Analyze the different outputs generated by the T forward passes.
- The higher the value, the more uncertain the model is.

Uncertainty (MonteCarlo Dropout) — T=5
1 means False Positive; 0 means True Positive; Pred means prediction.

Can we use uncertainty to remove false
positives?
Uncertainty (MonteCarlo Dropout) — T=5

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?

1 means False Positive; 0 means True Positive; Pred means prediction.

Can we use uncertainty to remove false
positives?
Uncertainty (MonteCarlo Dropout) — T=5

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?

1 means False Positive; 0 means True Positive; Pred means prediction.

This list is ordered by the
descending order of being a

False Positive.
idx_alert, Label, Pred, (P_fp,

Unc)

Can we use uncertainty to remove false
positives and reduce de list of alerts?
Uncertainty (MonteCarlo Dropout) — T=5

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?
idx_alert, Label, Pred, (P_fp, Unc)

1 means False Positive; 0 means True Positive; Pred means prediction.

Can we use uncertainty to remove false
positives and reduce de list of alerts?
Uncertainty (MonteCarlo Dropout) — T=5

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?
idx_alert, Label, Pred, (P_fp, Unc)

One way is to simply output the prediction, prob_fp and uncertainty together with the alert
information and leave to the user to make a decision (but now with more information).

1 means False Positive; 0 means True Positive; Pred means prediction.

Can we use uncertainty to remove false
positives and reduce de list of alerts?
Uncertainty (MonteCarlo Dropout) — T=5

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?
idx_alert, Label, Pred, (P_fp, Unc)

One way is to simply output the prediction, prob_fp and uncertainty together with the alert
information and leave to the user to make a decision (but now with more information).

The other is to use descriptive statistics to find a threshold. For instance, the min values for
misclassifications are 0.095695 and 0.077910. Therefore, if we pick a threshold of 0.075
(which is smaller than both min values), we can achieve a reduction of 20 out of 71 FPs — a
reduction of 28% of false alarms in the actual list of alerts provided by Infer.

Work in Progress Exploring Confidence Intervals Theory for Deep Learning to find the
misclassified correctly

1 means False Positive; 0 means True Positive; Pred means prediction.

Outline
About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Infrastructure-as-code (IaC) scripts in Puppet Manifests
(New technology based on scripts that are prone to security vulnerabilities [1])

[1] Akond Rahman, Chris Parnin, Laurie Williams. The Seven Sins: Security Smells
in Infrastructure as Code Scripts. ICSE’19

Software configuration management and deployment tools like Puppet became
popular amongst software development warehouses.🚀

These tools help infrastructure teams increase productivity by automating various
config tasks (e.g., server setup) through scripts that can be reused and versioned.👷

As with any piece of code, IaC scripts are also prone to defects such as security
vulnerabilities.💀

199K vulnerable
IaC templates

67k potential
Security Smells in IaC

Rahman et al. [ICSE’19; TSE’20]🫣
Oh gosh!

@rmaranhao

Assessment > 12 types of weaknesses

Weakness Name Example

CWE-798 Use of Hard Coded Credentials $username = “mariadb”

CWE-269 Use of Hard Coded Password $password = “!TQ23Rg”

CWE-321 Use of Hard Coded Cryptographic Key $key = “A67ANBD7”

CWE-319 Use of HTTP without TLS $req = “http://www.domain.org/secret”

CWE-546 Suspicious Comment #https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=538392

CWE-326 Use of Weak Crypto Algorithms password => md5($debian_password)

CWE-284 Invalid IP address Binding $bind_host = “0.0.0.0”

CWE-258 Empty Password in Configuration File $rabbitmq_pwd = “”

CWE-250 Admin by default $user = “admin”

CWE-521 Weak Password pwd => “12345”

CWE-1007 Homoglyphs Detection (typo-squatting attacks) $source = "http://deb.debi𝑎n.org/debi𝑎n"

CWE-829 Malicious Dependencies $postgresql_version = 8.4

@rmaranhao

🎯 Focus on Puppet

⚙ Lightweight Solution Available (called SLIC) [Rahman et al., ICSE’19]
99% of precision and accuracy in an oracle dataset

1st question: How does SLIC perform on a new dataset?

Motivation > Automated Security Weakness Detection in Puppet

SLIC detects 7 types of weaknesses.💀

@rmaranhao

Study 1 > Validation with Students
👩🦳 👨🦰

👨 🧑

Research Team

1419 GitHub repositories (~34k Puppet Scripts).

Found 31990 security warnings on 9144 of Puppet scripts.

@rmaranhao

http://www.domain.org/secret
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=538392
http://deb.debian.org/debi%F0%9D%91%8En

Study 1 > Validation with Students
👩🦳 👨🦰

👨 🧑

Research Team

Two samples: proportional and uniform.

2 authors validated a total of 502 warnings.

Precision decreased
from 99% to 64%. 🙁

@rmaranhao

Study 1 > Validation with Students
👩🦳 👨🦰

👨 🧑

Research Team

Two samples: proportional and uniform.

2 authors validated a total of 502 warnings.

Precision decreased
from 99% to 64%. 🙁

Maybe we don’t have
enough context?! 🤔

@rmaranhao

Study 2 > Validation with OSS Maintainers
👷 👷

🧑💻 🧑🔧

Maintainers

Issued alerts to projects maintainers involved in the slack
puppet community.

Issues included the code sample, issues description and
links to more information.

Actionability
Assessment
Description
Location

📧

💀

@rmaranhao

Study 2 > Validation with OSS Maintainers
👷 👷

🧑💻 🧑🔧

Maintainers

Got 51 answers to the 228 issues submitted; but only 33 were
clearly validated. “N/A”;“:thumbs_down:”

“These todos’s shouldn’t be there, I agree…”

❌

✅

@rmaranhao

Study 2 > Validation with OSS Maintainers
👷 👷

🧑💻 🧑🔧

Maintainers

Got 51 answers to the 228 issues submitted; but only 33 were
clearly validated.

Ups! Precision is even
worse.

“N/A”;“:thumbs_down”

“These todos’s shouldn’t be there, I agree…”

❌

✅

Precision decreased to
28%, 😣

@rmaranhao

1st question: How does SLIC perform on a new dataset? 🙁 Not great!

@rmaranhao

1st question: How does SLIC perform on a new dataset? 🙁

Problem > Puppet IaC Security Linters are not reliable yet!

Not great!

Precision is even lower when evaluated by maintainers—developers with more
knowledge and context of the applications.🧐

@rmaranhao

1st question: How does SLIC perform on a new dataset? 🙁

Problem > Puppet IaC Security Linters are not reliable yet!

Not great!

Precision is even lower when evaluated by maintainers—developers with more
knowledge and context of the applications.🧐

During study 1 and study 2, we were able to list several problems in the tool
weakness- and analysis-related. 🎯

if has_key($userdata, ‘env’) SLIC found a hard coded secret in this logical condition 🙅

@rmaranhao

1st question: How does SLIC perform on a new dataset? 🙁

Problem > Puppet IaC Security Linters are not reliable yet!

Not great!

Precision is even lower when evaluated by maintainers—developers with more
knowledge and context of the applications.🧐

During study 1 and study 2, we were able to list several problems in the tool
weakness- and analysis-related. 🎯

if has_key($userdata, ‘env’) SLIC found a hard coded secret in this logical condition 🙅

Static analysis tools can be iteratively improved and extended by incorporating
feedback from the developer community [Sadowski, ACM Commun.’18]🔬

@rmaranhao

Students Owners of OSS Projects

Meeting w/ Puppet Labs + Vox Pupuli

Practitioners

Puppet Community Prolific

Phase 1

Phase 2

SLIC
Rahman et al.

InfraSecure v0.1.0

InfraSecure v1.0.0

InfraSecure v1.1.0

Methodology > Improve the linter with Practitioners’ Feedback

@rmaranhao

InfraSecure v0.1.0 > Design Choices

if has_key($userdata, ‘env’) SLIC found a hard coded secret in this logical condition

Variable/Attribute Assignments (VASS)
isVarAssign(token) /\ isAtrAssign(token)
Reduce the number of incorrect predictions

❌

@rmaranhao

InfraSecure v0.1.0 > Design Choices

if has_key($userdata, ‘env’) SLIC found a hard coded secret in this logical condition

Variable/Attribute Assignments (VASS)
isVarAssign(token) /\ isAtrAssign(token)
Reduce the number of incorrect predictions

❌

Reasoning about the token value (TOKVAL) Some of the rules did not reason about token.value

aws_admin_username = downcase($::operatingsystem)❌ No secret is stored

@rmaranhao

InfraSecure v0.1.0 > Design Choices

if has_key($userdata, ‘env’) SLIC found a hard coded secret in this logical condition

Variable/Attribute Assignments (VASS)
isVarAssign(token) /\ isAtrAssign(token)
Reduce the number of incorrect predictions

❌

Reasoning about the token value (TOKVAL) Some of the rules did not reason about token.value

aws_admin_username = downcase($::operatingsystem)❌ No secret is stored

Credentials that are not consider secrets by the community isUserDefault(token.value)

[Maintainer] “The names of these UNIX accounts are not considered to be secret. They are published openly as part of the PE
documentation: https://puppet.com/docs/pe/ 2019.8/what_gets_installed_and_where.html#user_and_group_accounts_installed”

@rmaranhao

InfraSecure v0.1.0 > Rule Improvements

md5checksum = ’07bd73571b7028b73fc8ed19bc85226d’ Not a call to the md5() function

Usage of Weak Crypto Algorithms
isFunctionCall()
Search for in calls to functions

❌

Invalid IP address binding IPs follow dot-decimal notation

description => ’Open up postgresql for access to sensu from 0.0.0.0/0’.❌ Description != IP

 isInvalidIPBind(token.value)

Check our paper for more! Section 4.3

@rmaranhao

InfraSecure v0.1.0 > Design Choices

🥳
Precision increased!

Can we improve
even more?
Let’s ask
practitioners!

@rmaranhao

Students Owners of OSS Projects

Meeting w/ Puppet Labs + Vox Pupuli

Practitioners

Puppet Community Prolific

Phase 1

Phase 2

SLIC
Rahman et al.

InfraSecure v0.1.0

InfraSecure v1.0.0

InfraSecure v1.1.0

Methodology > Improve the linter with Practitioners’ Feedback

@rmaranhao

Study 3 > Validation with Practitioners
👩🎤 🦹

🥷 🦸

Practitioners

Experiment shared with the Puppet communities on Slack
(puppet.community.slack.com) and Reddit (r/puppet).

14 participants

Prolific
117 participants ⚠Validation of

339 warnings

Validate InfraSecure v0.1.0 alerts

Pre-screening: Specific Industries (e.g., Computer and Electronics), experience with configuration
management tools, security and infrastructure as a service; and, a quizz of three programming
questions about different puppet configurations. (check the replication package)

@rmaranhao

InfraSecure v1.0.0 > More feedback and improvements

Apturl => “http://deb.debian.org/debian SLIC reports every single occurence of http:// as unsafe.

Use of HTTP without TLS is fine sometimes
inWhitelist(token.value)
Customizable rule (whitelist with credible sources)

❌

[Practitioner] “I think it is fine if localhost is used. Otherwise TLS should be mandatory. All
the big financial organizations will not use this check because they cannot create internal
certs or use letsencrypt.”

[Practitioner] “By default, it’s unsafe to not use HTTPS. But for internal testing/development
it is acceptable to me to not use HTTPS all the time.”

@rmaranhao

InfraSecure v1.1.0 > New Patterns (Extension)

Weak Password isStrongPwd()

CWE-521 Weak Password pwd => “12345”

CWE-1007 Homoglyphs Detection (typo-squatting attacks) $source = "http://deb.debi𝑎n.org/debi𝑎n"

CWE-829 Malicious Dependencies $postgresql_version = 8.4

Uses PHP algorithm developed by Thomas Hruska.

Homograph Attacks hasCyrillic(), Social engineering attack that purposely uses
misspelt domains for malicious purposes.

Malicious Dependencies isResource()
isMalicious(),

Our database integrates malicious versions of
software for 33 different packages used by the
Puppet community (e.g., rabbitmq, apt, cassandra,
postgresql, etc).

supply chain attack

supply chain attack

@rmaranhao

Study 3 > Validation with Practitioners
👩🎤 🦹

🥷 🦸

Practitioners

Precision increased
between iterations
(28% -> 76% -> 79%
-> 83%)

More Anti-Patterns
Malicious dependencies, Homograph
Attacks and Weak Passwords

More Customisation
Whitelist

@rmaranhao

http://puppet.community.slack.com
http://deb.debian.org/debian
http://deb.debian.org/debi%F0%9D%91%8En

🤩 Rules

Check our paper for more! Tables 5 & 7

@rmaranhao

Main Conclusions

(1) It is feasible to tune security linters to produce acceptable precision.

(2) Involving practitioners in discussions is an effective way to guide the
improvement of those linters.

In the process of feedback collection, tool owners can learn more on how to
extend the anti-patterns coverage and how to better customise the tool!

👍

🦸

💯

https://github.com/TQRG/puppet-lint-infrasecure @rmaranhao

Work in Progress

Exploring dynamic taint analysis to keep track of vaults (storage where secrets
can be stored to not be hard-coded in the scripts).

https://github.com/TQRG/puppet-lint-infrasecure @rmaranhao

Outline
About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Fixing Vulnerabilities Potentially Hinders Software Maintainability
(Do security patches have a negative impact in software maintainability?)

SOFTWARE PRODUCT QUALITY ISO/IEC 25010

😵💫 Complex code is difficult to understand, maintain and test.

🐞 Complexity hides bugs -> security vulnerabilities

📏 Software vulnerabilities ~ code complexity

FUNCTIONAL
CORRECTNESS

RELIABILITY

MAINTAINABILITY

EVOLVABIILITY

USABILITY

SECURITY
(2011)

The risk of software vulnerabilities can be minimised by writing clean
and maintainable code.

@rmaranhao

Fixing Vulnerabilities Potentially Hinders Software Maintainability
(Do security patches have a negative impact in software maintainability?)

MAINTAINABLE SECURITY The degree of effectiveness and efficiency with which software can be changed to
mitigate a security vulnerability — corrective maintenance.

THE PROBLEM 😖 Many developers still lack knowledge on best practices to deliver and maintain secure
and high-quality software.

💰 Software maintainability is ~75% of the cost related to a project.

⚙ Available tooling does not provide any information on the quality of a patch.

WHY IS IT IMPORTANT? 📈 In a world where zero day vulnerabilities are constantly emerging, mitigation needs to
be fast and efficient.

🚀 Therefore, it is important to write maintainable code to support the production of more
secure software and, prevent the introduction of new vulnerabilities.

@rmaranhao

Fixing Vulnerabilities Potentially Hinders Software Maintainability
(Do security patches have a negative impact in software maintainability?)

OUR HYPOTHESIS 💭 Some of these patches may have a negative impact on the software maintainability
and, possibly, even be the cause of the introduction of new vulnerabilities —
harming software reliability and introducing technical debt.

🥵 BUT improving software security is not a trivial task and requires implementing patches
that might affect software maintainability.

PREVIOUS RESEARCH 💀 34% of security patches performed introduce new problems and 52% are incomplete and do
not fully secure systems.

MAIN CONTRIBUTION
TO THE SE COMMUNITY

👀 Evidence that supports the trade-off between security and maintainability: developers may
be hindering software maintainability while patching vulnerabilities.

@rmaranhao

Fixing Vulnerabilities Potentially Hinders Software Maintainability
(Do security patches have a negative impact in software maintainability?)

MOTIVATION

More lines of code
More cyclomatic
complexity

@rmaranhao

Write Short Units of Code Unit Size

Write Simple Units of Code McCabe
Complexity

Write Code Once Duplication

Keep Unit Interfaces Small Unit Interfacing

Separate Concerns in Modules

Couple Architecture
Components Loosely

Component
Independence

Keep Architecture
Components Balanced

Component
Balance

Keep Your Code Base Small Volume

Automate Tests Testability

Write Clean Code Code Smells

Module
Coupling

Better Code Hub: https://bettercodehub.com/

COMPLIANCE

MAINTAINABILITY

IMPACT

@rmaranhao @sofiaoreis

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

°104 °103 °102 °101 °100 0 100 101 102 103 104

¢M(vs°1, vs)

Write Short
Units of Code

Unit Size

Write Simple
Units of Code

McCabe Complexity

Write Code
Once

Duplication

Keep Unit
Interfaces Small

Unit Interfacing

Separate Concerns
in Modules

Module Coupling

Couple Architecture
Components Loosely

Component Independence

Keep Architecture
Components Balanced

Component Balance

Write Clean
Code

Code Smells

M(v)

N=969
x=0.16
M=0.00
p=0.044

406 (41.90%) 188 (19.40%) 375 (38.70%)

N=969
x=47.53
M=2.00
p<0.001

145 (14.96%) 206 (21.26%) 618 (63.78%)

N=969
x=14.84
M=2.18
p<0.001

107 (11.04%) 230 (23.74%) 632 (65.22%)

N=969
x=11.85
M=1.00
p<0.001

261 (26.93%) 207 (21.36%) 501 (51.70%)

N=969
x=5.04
M=0.00
p=0.122

327 (33.75%) 205 (21.16%) 437 (45.10%)

N=969
x=-10.95
M=1.00
p<0.001

240 (24.77%) 231 (23.84%) 498 (51.39%)

N=969
x=-17.48
M=2.00
p<0.001

171 (17.65%) 215 (22.19%) 583 (60.17%)

N=969
x=-34.84
M=0.00
p=0.025

367 (37.87%) 225 (23.22%) 377 (38.91%)

N=969
x=-14.37
M=0.00
p=0.014

371 (38.29%) 228 (23.53%) 370 (38.18%)

Negative None Positive

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

🔴 38.3%

🔴 37.9%

🔴 33.8%

🔴 24.8%

🔴 26.9%

🔴 11.0%

🔴 17.7%

🔴 15.0%

🔴 X % The percentage of patches that hinder software maintainability per
guideline.

@sofiaoreis

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

°104 °103 °102 °101 °100 0 100 101 102 103 104

¢M(vs°1, vs)

Write Short
Units of Code

Unit Size

Write Simple
Units of Code

McCabe Complexity

Write Code
Once

Duplication

Keep Unit
Interfaces Small

Unit Interfacing

Separate Concerns
in Modules

Module Coupling

Couple Architecture
Components Loosely

Component Independence

Keep Architecture
Components Balanced

Component Balance

Write Clean
Code

Code Smells

M(v)

N=969
x=0.16
M=0.00
p=0.044

406 (41.90%) 188 (19.40%) 375 (38.70%)

N=969
x=47.53
M=2.00
p<0.001

145 (14.96%) 206 (21.26%) 618 (63.78%)

N=969
x=14.84
M=2.18
p<0.001

107 (11.04%) 230 (23.74%) 632 (65.22%)

N=969
x=11.85
M=1.00
p<0.001

261 (26.93%) 207 (21.36%) 501 (51.70%)

N=969
x=5.04
M=0.00
p=0.122

327 (33.75%) 205 (21.16%) 437 (45.10%)

N=969
x=-10.95
M=1.00
p<0.001

240 (24.77%) 231 (23.84%) 498 (51.39%)

N=969
x=-17.48
M=2.00
p<0.001

171 (17.65%) 215 (22.19%) 583 (60.17%)

N=969
x=-34.84
M=0.00
p=0.025

367 (37.87%) 225 (23.22%) 377 (38.91%)

N=969
x=-14.37
M=0.00
p=0.014

371 (38.29%) 228 (23.53%) 370 (38.18%)

Negative None Positive

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

💭 Hard time designing/implementing patches that respect
the limit bounds of branch points and function/module sizes.

🔴 38.3%

🔴 37.9%

🔴 33.8%

🔴 X % The percentage of patches that hinder software maintainability per
guideline. @sofiaoreis

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

°104 °103 °102 °101 °100 0 100 101 102 103 104

¢M(vs°1, vs)

Write Short
Units of Code

Unit Size

Write Simple
Units of Code

McCabe Complexity

Write Code
Once

Duplication

Keep Unit
Interfaces Small

Unit Interfacing

Separate Concerns
in Modules

Module Coupling

Couple Architecture
Components Loosely

Component Independence

Keep Architecture
Components Balanced

Component Balance

Write Clean
Code

Code Smells

M(v)

N=969
x=0.16
M=0.00
p=0.044

406 (41.90%) 188 (19.40%) 375 (38.70%)

N=969
x=47.53
M=2.00
p<0.001

145 (14.96%) 206 (21.26%) 618 (63.78%)

N=969
x=14.84
M=2.18
p<0.001

107 (11.04%) 230 (23.74%) 632 (65.22%)

N=969
x=11.85
M=1.00
p<0.001

261 (26.93%) 207 (21.36%) 501 (51.70%)

N=969
x=5.04
M=0.00
p=0.122

327 (33.75%) 205 (21.16%) 437 (45.10%)

N=969
x=-10.95
M=1.00
p<0.001

240 (24.77%) 231 (23.84%) 498 (51.39%)

N=969
x=-17.48
M=2.00
p<0.001

171 (17.65%) 215 (22.19%) 583 (60.17%)

N=969
x=-34.84
M=0.00
p=0.025

367 (37.87%) 225 (23.22%) 377 (38.91%)

N=969
x=-14.37
M=0.00
p=0.014

371 (38.29%) 228 (23.53%) 370 (38.18%)

Negative None Positive

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

💭 Hard time designing/implementing patches that respect
the limit bounds of branch points and function/module sizes.

🧑🏫 Developers forget to use the Introduce Parameter Object
patch pattern when patches require to input new information
to a function/class.

🔴 24.8%

🔴 X % The percentage of patches that hinder software maintainability per
guideline.

@sofiaoreis

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

°104 °103 °102 °101 °100 0 100 101 102 103 104

¢M(vs°1, vs)

Write Short
Units of Code

Unit Size

Write Simple
Units of Code

McCabe Complexity

Write Code
Once

Duplication

Keep Unit
Interfaces Small

Unit Interfacing

Separate Concerns
in Modules

Module Coupling

Couple Architecture
Components Loosely

Component Independence

Keep Architecture
Components Balanced

Component Balance

Write Clean
Code

Code Smells

M(v)

N=969
x=0.16
M=0.00
p=0.044

406 (41.90%) 188 (19.40%) 375 (38.70%)

N=969
x=47.53
M=2.00
p<0.001

145 (14.96%) 206 (21.26%) 618 (63.78%)

N=969
x=14.84
M=2.18
p<0.001

107 (11.04%) 230 (23.74%) 632 (65.22%)

N=969
x=11.85
M=1.00
p<0.001

261 (26.93%) 207 (21.36%) 501 (51.70%)

N=969
x=5.04
M=0.00
p=0.122

327 (33.75%) 205 (21.16%) 437 (45.10%)

N=969
x=-10.95
M=1.00
p<0.001

240 (24.77%) 231 (23.84%) 498 (51.39%)

N=969
x=-17.48
M=2.00
p<0.001

171 (17.65%) 215 (22.19%) 583 (60.17%)

N=969
x=-34.84
M=0.00
p=0.025

367 (37.87%) 225 (23.22%) 377 (38.91%)

N=969
x=-14.37
M=0.00
p=0.014

371 (38.29%) 228 (23.53%) 370 (38.18%)

Negative None Positive

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

💭 Hard time designing/implementing patches that respect
the limit bounds of branch points and function/module sizes.

🧑🏫 Developers forget to use the Introduce Parameter Object
patch pattern when patches require to input new information
to a function/class.

❗ Lack of encapsulation to hide implementation details and
make the system more modular.

🔴 26.9%

🔴 11.0%

🔴 X % The percentage of patches that hinder software maintainability per
guideline. @sofiaoreis

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

°104 °103 °102 °101 °100 0 100 101 102 103 104

¢M(vs°1, vs)

Write Short
Units of Code

Unit Size

Write Simple
Units of Code

McCabe Complexity

Write Code
Once

Duplication

Keep Unit
Interfaces Small

Unit Interfacing

Separate Concerns
in Modules

Module Coupling

Couple Architecture
Components Loosely

Component Independence

Keep Architecture
Components Balanced

Component Balance

Write Clean
Code

Code Smells

M(v)

N=969
x=0.16
M=0.00
p=0.044

406 (41.90%) 188 (19.40%) 375 (38.70%)

N=969
x=47.53
M=2.00
p<0.001

145 (14.96%) 206 (21.26%) 618 (63.78%)

N=969
x=14.84
M=2.18
p<0.001

107 (11.04%) 230 (23.74%) 632 (65.22%)

N=969
x=11.85
M=1.00
p<0.001

261 (26.93%) 207 (21.36%) 501 (51.70%)

N=969
x=5.04
M=0.00
p=0.122

327 (33.75%) 205 (21.16%) 437 (45.10%)

N=969
x=-10.95
M=1.00
p<0.001

240 (24.77%) 231 (23.84%) 498 (51.39%)

N=969
x=-17.48
M=2.00
p<0.001

171 (17.65%) 215 (22.19%) 583 (60.17%)

N=969
x=-34.84
M=0.00
p=0.025

367 (37.87%) 225 (23.22%) 377 (38.91%)

N=969
x=-14.37
M=0.00
p=0.014

371 (38.29%) 228 (23.53%) 370 (38.18%)

Negative None Positive

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

💭 Hard time designing/implementing patches that respect
the limit bounds of branch points and function/module sizes.

🧑🏫 Developers forget to use the Introduce Parameter Object
patch pattern when patches require to input new information
to a function/class.

❗ Lack of encapsulation to hide implementation details and
make the system more modular.

🙅 Developers reuse code by copying and pasting existing
code fragments instead of using the Extract method
refactoring technique. Clone detection tools may help with
this problem.

🔴 17.7%

🔴 15.0%

🔴 X % The percentage of patches that hinder software maintainability per
guideline.

@sofiaoreis

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Overall Score - M(v)

°104 °103 °102 °101 °100 0 100 101 102 103 104

¢M(vs°1, vs)

Write Short
Units of Code

Unit Size

Write Simple
Units of Code

McCabe Complexity

Write Code
Once

Duplication

Keep Unit
Interfaces Small

Unit Interfacing

Separate Concerns
in Modules

Module Coupling

Couple Architecture
Components Loosely

Component Independence

Keep Architecture
Components Balanced

Component Balance

Write Clean
Code

Code Smells

M(v)

N=969
x=0.16
M=0.00
p=0.044

406 (41.90%) 188 (19.40%) 375 (38.70%)

N=969
x=47.53
M=2.00
p<0.001

145 (14.96%) 206 (21.26%) 618 (63.78%)

N=969
x=14.84
M=2.18
p<0.001

107 (11.04%) 230 (23.74%) 632 (65.22%)

N=969
x=11.85
M=1.00
p<0.001

261 (26.93%) 207 (21.36%) 501 (51.70%)

N=969
x=5.04
M=0.00
p=0.122

327 (33.75%) 205 (21.16%) 437 (45.10%)

N=969
x=-10.95
M=1.00
p<0.001

240 (24.77%) 231 (23.84%) 498 (51.39%)

N=969
x=-17.48
M=2.00
p<0.001

171 (17.65%) 215 (22.19%) 583 (60.17%)

N=969
x=-34.84
M=0.00
p=0.025

367 (37.87%) 225 (23.22%) 377 (38.91%)

N=969
x=-14.37
M=0.00
p=0.014

371 (38.29%) 228 (23.53%) 370 (38.18%)

Negative None Positive

The larger number of negative cases may be explained
by guidelines with higher concentrations of negative
cases with higher amplitudes.
🔴 406 patches (41.9%)
🟡 188 patches (19.4%)
🟢 375 patches (38.7%)

🚀 Security patches may have a negative impact on the
maintainability of open-source software.

p-value = 0.044 < 0.05

🔴 41.9%

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Severity, Programming Language

0% 10% 20% 30% 40% 50%

PHP

Python

Objective-C/C++

Java

Ruby

C/C++

N=159
x=-11.13
M=0.00
p<0.001

N=71
x=3.13
M=0.00
p=0.042

N=426
x=4.14
M=0.13
p=0.334

N=26
x=-3.66
M=0.00
p=0.645

N=43
x=-1.92
M=0.00
p=0.717

N=241
x=0.46
M=0.00
p=0.048

Positive None Negative

0% 10% 20% 30% 40% 50% 60%

Unknown

Low

Medium

High
N=112
x=10.21
M=-0.05
p=0.419

N=395
x=-4.87
M=0.00
p=0.293

N=29
x=35.56
M=1.24
p=0.031

N=433
x=-0.22
M=0.00
p=0.036

Positive None Negative

💭 Higher severity vulnerabilities patches may have a
more negative impact on maintainability — high/
medium severity vulnerabilities may need more
attention than low severity while patching.

💡 Overall languages have a considerable amount
of cases that negatively impact maintainability—
between 35% to 50%—which confirms the need
for better/more secure programming
languages.

@rmaranhao

RQ2: Which weakness are more likely to affect
open-source maintainability?

0% 10% 20% 30% 40% 50% 60%

MISC

CWE-22

CWE-401

CWE-119

CWE-200

CWE-611
N=27
x=23.71
M=0.97
p=0.207

N=40
x=-15.10
M=-0.29
p=0.224

N=27
x=-9.12
M=0.00
p=0.069

N=79
x=4.11
M=0.00
p=0.070

N=47
x=1.88
M=0.00
p=0.460

N=98
x=20.94
M=0.00
p=0.167

Positive None Negative

0% 10% 20% 30% 40%

MISC

CWE-79

CWE-89

CWE-20 N=72
x=-12.51
M=0.00
p=0.978

N=56
x=-4.34
M=0.00
p=0.778

N=136
x=-3.41
M=0.00
p=0.383

N=31
x=-11.32
M=0.00
p=0.252

Positive None Negative

CWE-20, CWE-200, CWE-401, CWE-22

Common Weakness Enumeration (CWE) Website: https://cwe.mitre.org/

Information
Exposure

Improper Input
Validation

Missing Release
of Memory after
Effective Lifetime

Path
Traversal

@rmaranhao

RQ3: What is the impact of security patches versus
regular changes on the maintainability of open-source
software?

0% 10% 20% 30% 40%

Regular Changes
(random-baseline)

Regular Changes
(size-baseline)

Security Patches

x=0.16
M=0.00
p=0.044

x=-4.19
M=0.00
p=0.300

x=-5068.87
M=0.00
p<0.001

Positive None Negative

size-baseline: a dataset of random regular changes with the same size as
security patches; random-baseline: a dataset of random changes.

📈 Results for both baselines show that
regular changes are less prone to hinder
the software maintainability of open-source
software.

👀 Security-related commits are observed to
harm software maintainability, while regular
changes are less prone to harm software
maintainability.

🚀 Thus, we urge the importance of
adopting maintainability practices while
applying security patches.

@rmaranhao

END. WHAT SHOULD YOU DO NEXT?

🚶 Follow the best practices. Developers harm software maintainability
because they still not consider some quality aspects in their solutions/
patches.

⚠ Prioritise high and medium severity vulnerabilities.

🙇 Pay special attention to the types of software vulnerabilities that are more
prone to have an impact on software vulnerability.

🛠 Build tools for Patch Risk Assessment Bases on Source Code Metrics,
Static Analysis features and Software Vulnerability Metadata.

🧑🏫 Make maintainable security part of the CS curricula.

🤟 Build better and more secure programming languages.

🔗 Replication package available: https://github.com/TQRG/maintainable-security @rmaranhao

That’s it, folks!

@rmaranhao

Any questions? Ask now.

In the future, we can get in touch by email:
rui@computer.org

mailto:rui@computer.org

