

Making Software More Secure and Security Engineers' Lives Easier

Rui Abreu (U.Porto)

🔰 @rmaranhao

The 9th International School on Software Engineering (ISE 2023) July 10-12, 2023

Outline

About me

Research Overview Collection of SAST Tools Software Vulnerability Detection + AI Best Practices For Patch Documentation Alert Prioritization Infrastructure-as-code (IaC) scripts Fixing Vulnerabilities Potentially Hinders Software Maintainability

Outline

About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritization

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Why focusing on security (during your PhD)?

- \swarrow The number of new vulnerabilities is growing over time and it takes a long time to patch vulnerabilities regardless of their severity.
- Lack of security experts (gap of 3 million jobs globally).
- Adoption is still low (high false positive rates, lack of education and training, lack of actionability, poor usability).
- Snowledge is not structured, updated and centralised.
- Restance of the software with software with

Outline About me Research Overview Collection of SAST Tools Software Vulnerability Detection + AI Best Practices For Patch Documentation Alert Prioritisation Infrastructure-as-code (IaC) scripts Fixing Vulnerabilities Potentially Hinders Software Maintainability

Systematic Survey on SAST Tools

(On the road to improve static analyzers adoption for security)

SAST tools: Static Application Security Testing tools (aka, static analysers for security).

Two of the main issues for the low adoption of SAST tools are:

1) the lack of complete documentation (approaches, performance rates, scalability, coverage);

2) the lack of structured, updated and centralised knowledge.

Systematic Survey on SAST Tools

(On the road to improve static analyzers adoption for security)

In order to get a better overview of the SAST scope, we ran a systematic survey on the topic to answer the following research questions:

RQ1: What are the underlying techniques used by SASTs?

RQ2: Which classes of vulnerabilities and programming languages are covered by the existing SASTs?

RQ3: Are the research outputs and codebases of SASTs publicly available?

RQ4: What conclusions can we draw on the performance of SASTs from the results presented in the selected work?

😏 @rmaranhao

RQ1: What are the underlying techniques used by SASTs?

RQ2: Which classes of vulnerabilities and programming languages are covered by the existing SASTs?

 Pattern-based//AST Matchers RATS, Flawfinder, ITS4, Bandit, SLIC/ACID (> 40 tools)

 Flow Analysis (Control-, Data- and Taint analysis) Checkmarx, FindBugs, Polyspace Bug Finder, WAP, Pixy (> 40 tools)

 Abstract Interpretation Astrée PolySpace Code Prover, Polyspace for Ada (> 10 tools)

Model Checking MOPS, ESBMC, CBMC, JBMC (approx. 10 tools)

 Symbolic Execution Infer, PVS-Studio (approx. 10 tools)

Hybrid Solutions (Static and Dynamic Analysis) appScreener, CodeDX, PT Application Inspector, Veracode, Sparrow, thunderscan (11 tools)

Machine Learning
 Static Reviewer, VulDeePecker, DeepCode, TAP (4 tools)

 Source Code Query Tools CodeQL, CppDepend (2 tools)

🔰 @rmaranhao

RQ3: Are the research outputs and codebases of SASTs publicly available?

For approximately 40% (58/145) of the SASTs, the codebase is not available which makes their understanding, usage and extensibility more difficult.

We also collected the license of each tool. Only 6 tools did not have any type of license. More than 50% of the tools have an open-source license, i.e., tools than can usually be used freely in research and in the industry

> RQ4: What conclusions can we draw on the performance of SASTs from the results presented in the selected work?

Only 23 empirical validations were found for 23 tools. Overall, all tools reported False Positives.

There is a preference for validating the tools with real data instead of artificial. However, empirical validations with real vulnerabilities are rare due to the low amounts of datawhich sometimes may not be enough to assess the real performance of the tool. Datasets with more real data is needed to fairly assess the performance of SASTs. 🔰 @rmaranhao

Table 7. SoSATs Empirical Validation Results

Name	S/U	Type	Year	Technique(s)	Vul. Taxonomy (7+1)	PL.	Real	Artificial	#TP	#FP	FPR	FNR	Prec.	Recall	F-score	Acc.	Size	Time	Refs
ESBMC	S	Â	2009	Model Check- ing: SMT Solver	(3) Input Validation and Representation; Time and State; Code Quality	C/C++	✓ (9523 tasks)	x	4316	24	•	•	-	-	•	-	•	[62- 64, 100]	
Flowdroid	U	盦	2013	Taint Track-	(1) Encapsulation	Java	✓ (500 score)	×	117	9	-		86%	96%	-	-		-	[13]
HCL/IBM AppScan	S	C	1998	Abstract In- terpretation	(1) Input Validation and Representation	Multi: C, C++, Java, C#, JavaScrint	√ (60 web- sites)	×	33	4									[247
KOS	s	<u>ם</u>	2012	Abstract In- terpretation	(2) Input Validation and Representation; Code Ouality	C/C++	✓ (479 KLOC)	×	•			•	91%- 99%					18h25s	[35]
BMC	s	盦	2018	Model Check-	(1) Errors	Java	×	✓ (368 tects)	327	14	-		-	-				-	[65]
uliaSoft	S	C	2019	Abstract In- terpretation	(1) Input Validation and Representation	Java	×	✓ (2740 pro- grams)	1415	117	8%			92%			-		[225
INT	U	1	2012	Taint Anal- ysis; Range Analysis	(1) Input Validation and Representation	с	✓ (1 app)	x	1	42			-				8916 files	160m	[26
MOPS	S	盦	2002	Model Check- ing	(1) Time and State	с	✓ (9 pack- arres)	×	2333	108						-	-		[45, 46, 217
hpSAFE	U	1	2015	Taint Analy- sis	(1) Input Validation and Representation	PHP	✓ (35 plug- ins)	×	387	62	÷	÷	86%	66%	75%	-	-	-	[18
ixy	U	盦	2005	Taint Analy-	(1) Input Validation and Representation	PHP	✓ (6 apps)	x	51	47	50%	-	-	-	-	-	50605 LOC	-	[13
ysa/Pyre	U	<u>ם</u>	2020	Pattern- based; Taint Analysis	(1) Input Validation and Representation	Python	(1app)	×	180	150	45%	•	-	55%	-	-		-	
ABER/SVF	U	±	2015	Data-flow analysis; Pointer analysis	(1) Code Quality	C/C++	✓ (5 apps)	✓ (15 pro- grams)	211	48	-	-	-	18.5%			2324.1 KLOC	522.58	[23 235
aturn	U	â	2005	Control-flow Analysis; Alias Analy- sis	(1) Code Quality	c	✔ (1 pro- gram)	×	179	121	-	-		-		60%	12455 files (4.8M LOC)	19h40r	1 [11 277 278
LIC/ACID	U	1	2018	Pattern-based	(1) Environment	Multi: An- sible, Pup-	✓ (140 scripts)	×	•	•			99%	99%	•	•	-	-	[20
nlint/LCI int		#	2002	Annotations-	(2) Innut Validation	C/C++	1 11	x	25	76									fei

					Table 7. S	SoSATs Empir	ical	Validatio	on Results								
Name	S/U	Туре	Year	Technique(s)	Vul. Taxonomy (7+1)				Table 9. U	nsound Static /	Analysis Tools	(117 SoS/	ATs were f	ound)			
ESBMC	s	â	2009	Model Check- ing: SMT	(3) Input Validation and Representation;	Name	Тур	e Year Input	Technique(s)	Vul. Taxonomy (7+1)	PL.	Code	License	EMS (Perf.)	Popularity	Institute	Refs
Wandard I			0010	Solver	Time and State; Code Quality	(H) AMNESIA	İ	2005 Source Code	Data-flow Analy- sis	 Input Validation and Representation 	Java	🖌 (bin)		1	G 35.4k	University of Southern Califor-	[117,
riowarosa	0		2015	ing	(1) Encapsulation	Android Lint	₽	2013 Source	Pattern-based	(2) API Abuse; Secu-	Java	1	Apachev2	-	G 151	Google, JetBrains	[106]
HCL/IBM AppScan	s	C	1998	Abstract In- terpretation	(1) Input Validation and Representation	C Androwam	<u>_</u>	Code 2012 Smali Code	Data-flow Analy- sis	rity Features (2) Code Quality; En- capsulation	Java	✔ (Python)	LGPLv3	1	★ 289, ₽ 104	University of Lion	[245]
IKOS	s		2012	Abstract In-	(2) Input Validation	ApexSec	ø	2010 Source Code	N/A	(2) Input Validation and Representation; Environment	PL/SQL	x	Paid; Trial Avail.		G4	Recx Ltd.	[152]
		_		terpretation	and Representation; Code Quality	AppChecker	0	2007 Source Code	Data-flow Analy- sis	(6) Input Validation and Representa- tion: API Abuse:	Multi: C/C++, C#, PHP, Java	×	Avail. for Russian Compa-		G 3	Echelon	[85]
JBMC	s	H	2018	Model Check- ing	(1) Errors (1) Innut Validation					Time and State; Er- rors; Code Quality;			nies				
Junasore	3	0	2019	terpretation	and Representation	AppCodeScan	8	2007 Source Code	Pattern-based; Data-flow Analy-	(1) Input Validation and Representation	Multi: C#, Java	🖌 (bin)	CC BY- NC-SA		G 2	Blueinfy	[34]
KINT	U	1	2012	Taint Anal- ysis; Range Analysis	(1) Input Validation and Representation	Application Inspector	-	2019 Source Code	aas Pattern-based	(2) API Abuse; Secu- rity Features	Multi: C/C++, C#, Java, JavaScript, HTML, Python,	✔ (C#)	MIT		★ 3.4k, ¥277	Microsoft	[172]
MOPS	S	±	2002	Model Check- ing	(1) Time and State	an	_	1015 C		and the state	Objective-C, Go, Ruby, PowerShell	J	n	(100 000)	C (1403
phpSAFE	U	盦	2015	Taint Analy- sis	(1) Input Validation and Representation	(n) apportener	Ŭ	Code; Binary Code	~~	(2) input Vinitian and Representation; Environment	Go, Groovy, Java, JavaScript, Kotlin, PHP, Dathan Balay	^	Avail.	v (10%-20%)	0.	Screener app-	[10]
Pixy	U	盦	2006	Taint Analy- sis	(1) Input Validation and Representation	AttackFlow	0	2016 Source Code	Taint-flow Analy- sis	(4) Input Validation and Representation;	Multi: Net, Java, JavaScript, Type-	×	Paid	-	G 12	AttackFlow	[17]
Pysa/Pyre	U	<u>ם</u>	2020	Pattern- based; Taint	(1) Input Validation and Representation					Security Features; Time and State; Code Quality	Script, HTML						
SABER/SVF	U	1	2015	Analysis Data-flow analysis;	(1) Code Quality	bandit	-	2015 Source Code	Pattern-based; Control-flow Analysis	(3) Input Validation and Representation; Security Features; Environment	Python	✔ (Python)	Apachev2	✓ (#FPs may exist)	★ 2.8k, ₽ 278	Beyond Security	[27, 198]
		-		analysis		D BOON	ŝ	2000 Source Code	Integer range	(1) Input Validation and Representation	c	✔ (C)	BSD	(FPR=12.5%)	G 788k	University of Cal- ifornia Berkeley	[263, 290]
Saturn	U	Ξ	2005	Control-flow Analysis; Alias Analy-	(1) Code Quality	Brakeman Pro	0	2020 Source Code	Data-flow Analy- sis	(3) Input Validation and Representation; Security Features;	Ruby	🖌 (Ruby)	Paid;	/	★ 5.9k, ₽616	Brakeman, Inc (Acquired by Synopsys)	[193]
SLIC/ACID	U	1	2018	sis Pattern-based	(1) Environment	Brakeman/Railroader	8	2010 Source Code	Data-flow Analy- sis	Environment (3) Input Validation and Representation; Security Eastures	Ruby	🖌 (Ruby)	MIT	1	★ 40, P 1	Railroader	[202]
Solint/I CI in	+ II	#	2002	Annotations.	(2) Input Validation				Record Second	Environment	010	10			C		
- COMPANY LAS LIER		-	0006	- Allovanous-	in niput vanuarion	 If the first 	411	1995 Normon	mattern_based:	era broat Validation	a of tax.		- Pate Trial		10.72	rarasoft	

44 Lines (44 slac) 800 Bytes 1 - tool Looded 2 - descriptions TOD 3 - examples : unisons 4 - hydrid: no 5 - description 5 - description 9 - compared to the 9 - compared	Systematic (On the road to improve	Survey or	SAST Tools
10 type: Open-Source			
12 - code:			
13 available: yes	amnesia.yaml	tools data:	
14 License: MIT 15 type: bipary	P android lint.vaml	tools data:	
16 - popularity:	B		
17 forks: 881	androwarn.yaml	tools data:	
18 stars: 4108	apexsec.yaml	tools data:	145 SASTe
20 - Pattern-based	appcbecker.vami	tools data:	110 0/1010
21 - Control-flow Analysis	-		
22 - Data-Flow Analysis 23 - Taint Tracking	appcodescan.yaml	tools data:	
24 - Range Analysis	application_inspector.yaml	tools data:	231 academic
25 - Variant Analysis	2		201 404401110
26 - programming_languages:	appscreener.yaml	tools data:	nonoro
27 - C/C++ 28 - C#	astree.yaml	tools data:	papers
29 - Go 28 - Java	attackflow.yaml	tools data:	
31 - JavaScript	D. bandharad	An ele alean.	
32 - Python	Dandityani	tools data:	
33 - TypeScript	boon.yaml	tools data:	
34 - Kingdoms: 35 - Input Validation and Representation	brakeman_pro.yaml	tools data:	
36 - API Abuse	D brakeman railroader vaml	tools data:	
37 - Errors	8		
38 - Code Quality	C_c++_test.yaml	tools data:	
40 - input: Source Code	Cargo_audit.yaml	tools data:	
41 - resources:	Cast application intelligence platform aip.vaml	tools data:	
42 - https://securitylab.github.com/tools/codeql 43 - https://latm.com/belp/latm/about_latm	D ant anticed	Anala data:	
44 - observations: TODO	L caCher,yami	toors data:	
_	Ch. cbmc.vaml	topis data:	

Systematic Survey on SAST Tools

(On the road to improve static analyzers adoption for security)

ASASTs may disrupt the team's productivity.

A Not Actionable.

A Poor Usability.

A Lack of structured and organised knowledge.

A Difficult to measure the coverage of the field.

A Scalability Issues.

Language and pattern dependent.

A Better tools for security are wanted.

me Artificial Intelligence has the potential to shift security left but still provides untrustworthy results.

Risk Analysis based on code changes (use static analysis to locate the problem and collect features).

🔰 @rmaranhao

New types of software (quantum, blockchain, infrastructure-as-code scripts).

Outline

About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Software Vulnerability Detection + AI

(Promises to shift security left in the SDLC)

We spent months performing experiments with deep learning algorithms like **Code2vec** and **CodeBERT** for vulnerabilities in **JavaScript** code (collected from advisory databases such as OSV and NVD).

Scrappers: https://github.com/TQRG/security-patches-dataset

Many studies between 2017 and 2021 reported **accuracy > 90%** for the software vulnerability task with AI.

But the reality for us was a bit different. We could not even reach an accuracy of 70%.

😏 @rmaranhao

Software Vulnerability Detection + AI

(Promises to shift security left in the SDLC)

Microsoft maintains a leaderboard with results for different tasks and different models trained and test on CodeXGLUE (a C/C++ dataset).

Our results with the new dataset were again below 70%.

We submitted our results with code2vec which were validated by the microsoft team.

D Coimbra, S Reis, R Abreu, C Păsăreanu, H Erdogmus. On using distributed representations of source code for the detection of C security vulnerabilities. International Workshop on Principles of Diagnosis (DX)

😏 @rmaranhao

Defect Detection (Code-Code)

Organization

Anonymous

Anonymous

UCLA & Columbi

SecurityAware T.

CodeXGLUE Team

Imperial College

Date ≑

2021-11-10

2022-11-17

2022-11-17

2021-04-02

2021-06-09

2020-08-30

Accura

64.42

64.17

63.32

63.18

62.48

62.08

Rank Model

VulBERTa-CNN

6 ContraBEBT C

7 ContraBERT G

PLBAR

9 code2vec

10 CodeBEB

Software Vulnerability Detection + AI

(Promises to shift security left in the SDLC)

We looked into the datasets of papers published in the software vulnerability + AI scope and we started to see a trend:

!! Lots of duplicates between the training and testing datasets that led to inflated results.

Which was later reported in the paper "Deep learning based vulnerability detection: Are we there yet?" by S. Chakraborty et al.

Software Vulnerability Detection + AI

(Promises to shift security left in the SDLC)

🔰 @rmaranhao

Software Vulnerability Detection + AI

(Promises to shift security left in the SDLC)

After spending time trying to fix the core problem with AI, we shifted our efforts to explainability and probing analysis.

"How different data attributes impact traditional machine learning classifiers?" Sampling Strategy, Distribution between classes, Granularity, Project Diversity, Multiplicity of Software Vulnerabilities

"BERT-based Models for Vulnerability Detection: Looking Beyond Validation Metrics" Probing analysis to check if BERT-models encode semantic (unused vars, tainted vars, vuln code) syntax (function, loop, conditional) and structural (complexity) information in code samples at function level for different CWEs.

😏 @rmaranhao

Outline

About me Research Overview Collection of SAST Tools Software Vulnerability Detection + Al Best Practices For Patch Documentation Alert Prioritisation Infrastructure-as-code (IaC) scripts Fixing Vulnerabilities Potentially Hinders Software Maintainability

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through for Vuln. Detection with AI and SASTs validation and comparison.)

Many works have reported that **commit metadata** (including commit messages) **are not enough** to classify security-related commits.

One study reported that it could only extract security-related words from 38% of the commit messages; however, it uses a dataset of silent fixes (which naturally have more cryptic messages).

Yet, none of the approaches looked carefully into the key information that could be extracted from commit messages.

Therefore, we performed an analysis of security commit messages and best practices application by security engineers.

🔰 @rmaranhao

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through for Vuln. Detection with AI and SASTs validation and comparison.)

We used Named Entity Recognition (NER), a natural language processing approach, to identify and extract key information, called *entities*, from unstructured data (in this case, text).

An entity can be any word or bag of words that refers to the same entity category. For instance, different names of companies "Netflix", "Google" or "Apple" are entities that belong to the Company category.

We designed a set of category entities that we tried to extract from commit messages.

Figure 3: Named Entity Recognition (NER) application example for a security commit message.

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through for Vuln. Detection with AI and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches?

Table 1: Entity category names, rationale, and entity examples.

Type	Category	Rationale	Entity Examples	Rules				
	SECWORD	Security-relevant words are usually used to describe the vulnerability and respective	Idap injection, crlf injection, improper validation, com-	1719				
		fix (we used a large set of security-relevant words collected in previous work [18, 41]).	mand injection, cross-site scripting, sanitize, bypass					
SEC	VULNID	Vulnerability IDs are used to identify vulnerabilities for different ecosystems in commit	GHSA-269q-hmxg-m83q, CVE-2016-2512, CVE-2015-	9				
		messages: CVE, GHSA, OSV, PyPI, etc. We crafted rules for the different IDs patterns.	8309, GHSA-9x4c-63pf-525f, OSV-2016-1					
	CWEID	Vulnerabilities usually belong to a weakness type. One common taxonomy used to	CWE-119, CWE-20, CWE-79, CWE-189	2				
		classify security weaknesses is the Common Weakness Enumeration (CWE) one. There-						
		fore, we crafted rules to detect CWE IDs.						
	SFVERTY vulnerabilities and etcheta (VRI ID). SFVERTY vulnerabilities and etcheta (VRI ID). SFVERTY vulnerabilities and etcheta (VRI ID). DFTECTON vulnerabilities are detected manually or using specific tools. Manual. CodeQL, Coverity. OSS-Fuzz. likht SHA Commit hashes that reference older versions where the vulnerability was introduced (OSV Schema [42]). A commit usually imples an action, in the case of security, fixing a vulnerability.							
	DETECTION	Vulnerabilities are detected manually or using specific tools.	Manual, CodeQL, Coverity, OSS-Fuzz, libfuzzer	8				
	SHA	Commit hashes that reference older versions where the vulnerability was introduced	f8d773084564, 228a782c2dd0	2				
		(OSV Schema [42]).						
	ACTION	A commit usually implies an action, in the case of security, fixing a vulnerability	fix, patch, change, add, remove, found, protect, update,	18				
COM		(corrective maintenance).	optimize, mitigate					
	FLAW	Fixing a security vulnerability usually implies fixing a flaw.	defect, weakness, flaw, fault, bug, issue	10				
	ISSUE	The GitHub issue/pull request number is sometimes referenced in the message and	#2, #13245	1				
	ELAW Fixing a security valuerability usually implies fixing a flaw. optimize mitigate ISSUE The Gifthub issue/pull request number is sometimes referenced in the message and can provide more information on the vulnerability. 4dect, veakness, flaw, fault, bug, issue 11							
	EMAIL	Contact e-mails of reviewers and authors usually appear after tags such as 'Reported-	johndoe123@gmail.com,catlover@yahooo.com,adven	1				
		by' and are important to know who to contact.	turetime@hotmail.com,supercool@outlook.com1					
	URL	Links to reports, blog posts, and bug-trackers references provide more information	https://www.htbridge.ch/advisory/multiple_vulnerabil	1				
		about the vulnerability.	ities_in_mantisbt.html					
	VERSION	Software versions are commonly referenced in commit messages.	3.1.0, v3.2, v2.6.28, 1.6.3, 2.1.395	4				
Type S	SEC: Security sp	pecific entity categories; Type COM: Commit specific entity categories.						
¹ Artifi	cial e-mails gene	erated automatically with ChatGPT for compliance with General Data Protection Regula	ation (GDPR).					

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through for Vuln. Detection with AI and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches?

To extract the entities for each category, we used a Python library called Spacy—which provides end-to-end pipelines for several natural language processing tasks (e.g., NER).

We built our own customized NER pipeline for security commit messages.

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through for Vuln. Detection with AI and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches? Analysis of 11036 commit messages.

Finding 1. Security engineers use security-related words in 61.2% of the security commit messages used to patch software vulnerabilities.

Finding 2. Vulnerability IDs, Weakness IDs and Severity are rarely mentioned in security commit messages—although important for manual and automated detection and prioritization.

Finding 3. No extraction of entities was performed from 8% of security commit messages mainly due to poorly written messages, misspelling issues and no clear connection with security.

Table 4: Extraction Results										
Category	#Entities	#Commits	%Commits							
SECWORD	16126	6749	61.2%							
ACTION	10364	6409	58.1%							
EMAIL	4738	2086	18.9%							
SHA	4943	1467	13.3%							
FLAW	4402	2843	25.8%							
ISSUE	3561	2805	25.4%							
URL	1175	929	8.4%							
VULNID	1799	1330	12.1%							
VERSION	658	571	5.2%							
DETECTION	629	374	3.4%							
SEVERITY	142	118	1.1%							
CWEID	25	23	0.2%							
Total	48562	10168	92.1%							
		•								

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through for Vuln. Detection with AI and SASTs validation and comparison.)

Do security engineers follow best practices to write security commit messages?

C1	4.10% of commit messages follow the conventional commits convention "(scone)." using prefixes such as "patch" or "fix"	Ta	ble 3: Best Practices to Write Generic Commi	t Messages
	faith and beaution and beaution and	ID	Best Practice	Standard
C2	100% of commit messages have a one line subject/header. But only 4/288 out of 11036 (38.85%) headers have security-related	C1	The header should be prefixed with a type.	[21]
	words (SECWORD) and reflect an action (ACTION).	C2	The message should have a one-line header/subject.	[01 06 00]
C3	59.91% of commit messages have a body but only 36.53%			[21, 30, 38]
	have SECWORDS.	C3	The message should have a body.	[36 38]
C4	8.4% of commit messages were signed-off-by.	C4	The message should mention the contact of the author	[26, 20]
			(signed-off-by and authored-by).	[30, 38]
C5	3.33% of commit messages include the reviewer contact.	C5	The message should mention the contact of the reviewer (reviewed-by).	[36, 38]
C6	25.42% of commit messages include references to issues.	C6	The message should mention references to issues or pull requests.	[38]
C7	1.78% of commit messages have references to bug trackers.	C7	The message should mention references bug trackers.	[38]

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through for Vuln. Detection with AI and SASTs validation and comparison.)

Do security engineers follow best practices to write security commit messages?

SECOM

A convention for security commit messages

Validated with the Open-Source Security Foundation (OpenSSF)

Feedback received from the security community suggests that they see value in SECOM and would like to see it evolve into a standard practice —5 out of the 7 participants responded "Yes" to "Would you use this or a similar convention as standard practice in your own work or advocate its use in your team?", the remaining two participants answered "Unsure".

Convention has been mentioned at BlackHat and Defcon by a security researcher that is already using it to patch thousands of vulnerabilities.

https://tgrg.github.io/secom/

type>: <header/subject> (<Vuln-ID>)

body> (what) descr

(what) describe the vulnerability/problem
(why) describe its impact
(how) describe the patch/fix

Weakness: <Weakness Name or CWE-ID>

Severity: <Low, Medium, High and Critical>

CVSS: <Numerical representation (0-10) of severity>

Detection: <Detection Method>

Report: <Report Link>

Reported-by: <Name> (<Contact>)

Reviewed-by: <Name> (<Contact>)

Co-authored-by: <Name> (<Contact>)

Signed-off-by: <Name> (<Contact>

Bug-tracker: <Bug-tracker Link>

OR Resolves: <Tssue/PR No.>

See also: <Issue/PR No.>

Field Rationale Description Usage of vuln-fix at the beginning of the header/subject to specify the fix is A type should be assigned to each commit [21]—which will make the identification of vulnerability fixes easie. The vuln-fix value was proposed by the Google OSV team during the feedback collection (F) phase. In addition SECOM the near-subject to specify the specific dispective spectra Header/Subject (Fields) Vuln-ID and other formats Auding the value and the former and the second seco mesage important and the mesage inportant part of the commit mesage since it provides space to add details on the problem, impact, and solution [27]. In our empirical analysis, we observed that 59.91s commit messages have a body. However, only 4031 out of those 6875 cases included security related words or had meaningful information. Body Describe the vulnerability (what), its impact (why), and the patch to fix the vulnerability (how) in approximately 75 Common Weakness Enumeration ID or The weakness ID provides information on which type of vulnerability can exist in the software. Software patch Weakness management teams may proceed differently according to the type of weakness. However, only 0.2% messages included this type of information. Severity can molivate software users to perform patch management faster (in case, of critical vulnerabilities) [17]. name Severity of the issue (Low, Medium, High, Severit Severity of the issue (Low, Medium, Hug, Critical). Numerical (0-10) representation of sever-ty of a security vulnerability Seoring System). Detection method (Tool, Manaul, et al. (19) and (1) and CVSS Detection value in adding this field (Table 6, RQ2). Link for vulnerability report which can a li usually provides more information on the vulnerability exploit or proof-of-concept. We observed that 3 out of back up the lack of information provided the 7 participants would like to see links to reports, (F) phase (RQ1). Report back up the lack of information provided the 7 participants would like to see links to reports, (P) phase (RQ1). in commit messages. Our tool extracted difference of the provide relation of the provide relatio the provide relation of the provide relation of the provide rel Introduced in Signed-off by Reviewed-by Bug-tracke when GitHub is used to manage issues Table 5: Fields description and rationale.

SECOM

(Compliance Checklist)

	Among a	Did was set the time of the committee timely first at the heading of the head of	1.5
	type	Did you set the type of the commit as vuin-nx at the beginning of the header?	M
Header	header/subject	Did you summarize the patch changes?	M
	header/subject	Did you summarize the patch changes within ~50 chars?	0
	Vuln-ID	Is there a vulnerability ID available? Did you include it between parentheses at the end of the header?	M
	what	Did you describe the vulnerability or problem in the first sentence of the body?	M
P. J.	why	Did you describe the impact of the vulnerability in the second sentence of the body?	M
Body	how	Did you describe how the vulnerability was fixed in the third sentence?	M
	*	Did you describe the what, why, and how within ~75 words (~25 words per section)?	0
	Weakness	Can this vulnerability be classified with a type? If so, add it to the metadata section.	M
Metadata	Severity	Can infer severity (Low, Medium, High, Critical) for this vulnerability? If so, add it to the metadata section.	M
	CVSS	Can you calculate the numerical representation of the severity through the Common Vulnerability Scoring System	M
		calculator (https://www.first.org/cvss/calculator/3.0)?	
	Detection	How did you find this vulnerability? (e.g., Tool, Manual, etc)	0
	Report	Is there a link for the vulnerability report available? If so, include it.	0
	Introduced in	Include the commit hash from the commit where the vulnerability was introduced.	0
Contonto	Reviewed-by	Include the name and/or contact of the person that reviewed and accepted the patch.	0
Contacts	Signed-off-by	Include the name and/or contact of the person that authored the patch.	M
Bug Tasalaan	External	Include the link to the issues or pull requests in the external bug-tracker.	0
Bug-Tracker	GitHub	Include the links for the issues and pull-requests related to the patch (Resolves See also:).	0
Ta	ble 7: SECOM (Compliance Checklist. [M-Mandatory; O-Optional; *-All fields in the section.]	

Work in Progress

Improved annotation with an annotation tool for natural language called Prodigy.

Trained a transformed based model for named entity recognition based on the data we extracted. Initial acc = 79%

Prodigy can access the uncertainty of each prediction. When it finds a case with high uncertainty, it presents the message and entities to the user for validation.

Active Learning - Different iterations of the model with new data (imp. of 5% after 4 iterations of 100 messages each)

Future Work Text Classification + NER

Radically efficient machine teaching. An annotation tool powered by active learning.

prodigy

Not a real case; just a use case provided by the website

Outline

About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

False Positives Prioritisation and Filtration

(Helping with triage of the alerts outputted by SASTs tools)

Nowadays, many companies use static analysis tools (SASTs) to automate the detection of bugs and potential security violations.

SASTs are known for their high false positive rates — general problem!

Extensive lists of warnings disrupt the developers' productivity since they are expected to judge each warning on their own, many times with poor knowledge and experience — time waster!

But, given that verification problems are undecidable, reporting false positive warnings is inevitable.

False Positives Prioritisation and Filtration

(Helping with triage of the alerts provided by SASTs tools)

Infer produces a list of warnings without any specific order or priority assigned. Alert prioritisation or post processing may soften the impact of false positives in tool adoption.

False Positives Prioritisation and Filtration (Helping with triage of the alerts provided by SASTs tools)

Our approach orders the list of warnings by the probability of being a False Positive.

False Positives Prioritisation and Filtration

(Helping with triage of the alerts provided by SASTs tools)

	Collection			Classification							
Table 1: Alerts	distribution	per type of	bug	Table 2: Alerts classification distribution per label (13 alerts							
Project	Resource	Null	Alerts	were removed due to an Infer bug)							
	Leak	Deref.		Project	True Positive	False Positive	Alerts				
apache-tomcat-9.0.50	66	230	296	apache-tomcat-9.0.50	225	69	294				
avrora-0.1.52	20	28	48	avrora-0.1.52	36	12	48				
joda-time-2.10.6	2	10	12	joda-time-2.10.6	11	1	12				
jython-2.7.2.2b3	62	118	180	jython-2.7.2.2b3	88	91	180				
xalan-j-2.7.1	10	38	48	xalan-j-2.7.1	27	21	48				
jackrabbit-2.21.7	98	91	189	jackrabbit-2.21.7	89	100	189				
apollo-1.8.2	7	22	29	apollo-1.8.2	16	13	29				
biojava-5.4.0	186	121	307	biojava-5.4.0	203	104	307				
h2database-1.4.200	83	74	157	h2database-1.4.200	121	31	152				
susi_server-230d679	58	39	97	susi_server-230d679	57	34	91				
Total	592	771	1363	Total	874	476	1350				

😏 @rmaranhao

False Positives Prioritisation and Filtration

(Helping with triage of the alerts provided by SASTs tools)

We compared different deep learning architectures (LSTM, BERT, CodeBERT and GraphCodeBERT).

Model	Acc
LSTM	60.23
BERT	70.20
CodeBERT	74.26
GraphCodeBERT	77.23

Figure 2: An illustration about GraphCodeBERT pre-training. The model takes source code paired with comment and the corresponding data flow as the input, and is pre-trained using standard masked language modeling (Devlin et al., 2018) and two structure-aware tasks. Ione structure-aware tasks is to predict where a variable is identified from (marked with orange lines) and the other is data flow edges prediction between variables (marked with blue lines).

😏 @rmaranhao

Training Configuration (k-fold cross validation)

- Evaluating machine learning algorithms requires data separation into a: Training set, used to estimate model parameters; Test set, used to evaluate the classifier's performance.
- We use the k-fold cross-validation technique:
- The dataset is split in k sets.
- One by one, is used for testing and the remaining k-1 other sets are used for training. This process is repeated k times for each set.

We performed a 5-fold cross validation for both scenarios. Each execution was performed 5 times with different random seeds (5-fold cross validation x 5 random seeds = 25 runs).

💓 @rmaranhao

False Positives Prioritisation and Filtration

(Helping with triage of the alerts provided by SASTs tools)

We use a softmax layer to calculates the likelihood of a sample being a true positive or false positive [x, y] where x is the likelihood of being a true positive and y the likelihood of being a false positive — we use y to organize the list of warnings.

Output Prioritized (First 10 warnings)

merFactorv

merFactory

Probability of being a False Positive: 0.3001589

List is in ascending

order of being a false

positive, i.e., true

positives appear in the

top of the list.

or: NULL DEREFERENCE

False Positive Probability Prediction False Positive Probability Prediction Infer's original output (First 10 warnings) Infer's original output (First 10 warnings) src/org/apache/xalan/xsltc/runtime/output/WriterOutputBuffer.java:38: error: NULL_DEREFERENCE src/org/apache/xalan/extensions/XPathFunctionResolverImpl.java:61: error: NULL_DEREFERENCE rrc/org/apache/xalan/xsltc/runtime/output/WriterOutputBuffer.java:38: error: NULL_DEREFERENCE irc/org/apache/xalan/extensions/XPathFunctionResolverImpl.java:61: error: NULL_DEREFERENCE irc/org/apache/xalan/xsltc/util/JavaCupRedirect.java:63: error: RESOURCE LEAK src/org/apache/xalan/xsltc/util/JavaCupRedirect.java:63: error: RESOURCE LEAK inc/org/apache/xalan/xsltc/compiler/ApplyImports.java65.error: NULL_DERFERENCE inc/org/apache/xalan/xsltc/compiler/ApplyImports.java65.error: NULL_DERFERENCE inc/org/apache/xalan/xslt/compiler/FormalNumberCall.java:59: error: NULL_DEREFERENCE src/org/apache/xalan/xslt/compiler/ApplyImports.java:65: error: NULL_DEREFERENCE rc/org/apache/xml/serializer/SerializerBase.java:71: error: NULL DEREFERENCE rc/org/apache/xml/serializer/SerializerBase.java:71: error: NULL DEREFERENCE src/org/apache/xalan/xsltc/compiler/ApplyImports.java:79: error: NULL_DEREFERENCE src/org/apache/xalan/xsltc/compiler/ApplyImports.java:83: error: NULL_DEREFERENCE src/org/apache/xalan/xsltc/compiler/Key.java:90: error: NULL_DEREFERENCE src/org/apache/xalan/xsltc/compiler/ApplyImports.java:79: error: NULL_DEREFERENCE src/org/apache/xalan/xsltc/compiler/ApplyImports.java:83: error: NULL_DEREFERENCE src/org/apache/xalan/xsltc/compiler/Key.java:90: error: NULL_DEREFERENCE src/org/apache/xalan/xsltc/trax/TrAXFilter.java:116: error: NULL DEREFERENCE src/org/apache/xalan/xsltc/trax/TrAXFilter.java:116: error: NULL DEREFERENCE Output Prioritized (First 10 warnings) src/org/apache/xalan/xsltc/util/JavaCupRedirect.java: Probability of being a False Positive: 0.06495786 src/org/apache/xalan/xslt/EnvironmentCheck.java:134: src/org/apache/xalan/xsltc/util/JavaCupRedirect.java:63: error: RESOURCE LEAK src/org/apache/xalan/xslt/EnvironmentCheck.java:134: error: RESOURCE LEAK Probability of being a False Positive: 0.09818842 src/org/apache/xalan/xsltc/trax/TransformerFactoryImpl.java:1305: error: RESOURCE_LEAK Probability of being a False Positive: 0.09818842 src/org/apache/xalan/xsltc/trax/TransformerFactoryII Probability of being a False Positive: 0.10622824 Probability of being a False Positive: 0.10622824 src/org/apache/xalan/xsltc/trax/TransformerFactory! Probability of being a False Positive: 0.10622824 src/org/apache/xalan/xsltc/trax/TransformerFactoryImpl.java:1312: error: RESOURCE_LEAK Probability of being a False Positive: 0.10622824 src/org/apache/xalan/xsltc/trax/TransformerFactoryImpl.java:1209: error: RESOURCE_LEAK Probability of being a False Positive: 0.11100773 src/org/apache/xalan/xsltc/trax/TransformerFactory Probability of being a False Positive: 0.11100773 src/org/apache/xalan/xsltc/trax/TransformerFactoryImpl.java:1164: error: RESOURCE LEAK src/org/apache/xalan/xsltc/trax/Transfo Probability of being a False Positive: 0.11100773 Probability of being a False Positive: 0.11100773 src/org/apache/xalan/xsltc/runtime/AbstractTranslet.java:561: error: RESOURCE_LEAK src/org/apache/xalan/xsltc/runtime/AbstractTranslet Probability of being a False Positive: 0.16833092 Probability of being a False Positive: 0.16833092 src/org/apache/xalan/xsltc/compiler/Key.java:90: error: NULL DEREFERENCE src/org/apache/xalan/xsltc/compiler/Key.java:90: ei Probability of being a False Positive: 0.2923071 src/org/apache/xalan/xsltc/dom/DOMAdapter.java:184 Probability of being a False Positive: 0.2923071 src/org/apache/xalan/xsltc/dom/DOMAdapter.java:184: error: NULL DEREFERENCE Probability of being a False Positive: 0.2968096 Probability of being a False Positive: 0.2968096 src/org/apache/xalan/xsltc/dom/DOMAdapter.java:249: error: NULL_DEREFERENCE src/org/apache/xalan/xsltc/dom/DOMAdapter.java:249

Probability of being a False Positive: 0.3001589

False Positive Probabi	lity Prediction									
nfer's original output (First 10 warnings) src/org/apache/salan/sslc/runtime/output/WriteroiutputHifer.java:BB: error: NULL_DEREFERENCE src/org/apache/salan/sslc/runtime/outputHireiosolverIngl.java:BB: error: NULL_DEREFERENCE src/org/apache/salan/sslc/complet/romsNinuesolverIngl.java:BB: error: NULL_DEREFERENCE src/org/apache/salan/sslc/complet/romsNinuesofS: error: NULL_DEREFERENCE src/org/apache/salan/sslc/complet/romsNinuesofS: error: NULL_DEREFERENCE src/org/apache/salan/sslc/complet/fallerMoss_Distriction_S: error: NULL_DEREFERENCE src/org/apache/salan/sslc/complet/sallerMoss_Districtions: Jone: The Source										
src/org/apach	Output Prioritized (First 10 warnings)									
If we wanted to make FP filtration, could we simply remove false positives from the list? Not quite because of misclassifications.	f being a False Positive 0.06493760 Valan/x31C/kar/martometracket, java:134: pro- being a False Positive 0.09818842 being a False Positive 0.0622824 List is in ascending List is in ascending L									
Probability o	/xalan/xsltc/dom/DOMAdapter.java:249: error: NULL_DEREFERENCE f being a False Positive: 0.3001589									

Can we use uncertainty to remove false positives?

Uncertainty refers to the lack of confidence for each output of a machine learning algorithm.

How do we calculate it so far? Using a MonteCarlo dropout approach.

- Analyze the different outputs generated by the T forward passes. - The higher the value, the more uncertain the model is.

Uncertainty (MonteCarlo Dropout) - T=5

1 means False Positive; 0 means True Positive; Pred means prediction

ι	Uncertainty distribution for the false alarms detected correctly (Label: 1, Pred: 1)		Uncertainty distribution for the real alarms predicted as false alarms (Label: 0, Pred: 1)	Uncertainty distribution for the false alarms predicted as real alarms (Label: 1, Pred: 0)			
count	47.000000	count	31.000000	count	24.000000		
mean	0.121971	mean	0.300449	mean	0.254796		
std	0.095684	std	0.082733	std	0.105699		
min	0.016707	min	0.095695	min	0.077910		
25%	0.041606	25%	0.284798	25%	0.160091		
50%	0.099058	50%	0.343593	50%	0.297044		
75%	0.175737	75%	0.354827	75%	0.352268		
max	0.366078	max	0.367706	max	0.367724		
Name:	predictive_unc_out, dtype: float64	Name: p	predictive_unc_out, dtype: float64	Name:	predictive_unc_o	ut, dtype: float64	

Can we use uncertainty to remove false positives?

Uncertainty (MonteCarlo Dropout) — T=5

1 means False Positive; 0 means True Positive; Pred means prediction.

	Uncertainty distribution for the false alarms detected correctly (Label: 1, Pred: 1)	u :	Incertainty distribution for the real alarms predicted as false alarms (Label: 0, Pred: 1)	Uncertainty distribution for the false alarms predicted as real alarms (Label: 1, Pred: 0)			
count	47,800000	count	31.000000	count	24.000000		
mean	0.121971	mean	0.308449	mean	0.254796		
std	0.095684	std	0.082733	std	0.105699		
min	0.016707	min	0.095695	min	0.077910		
25%	0.041606	25%	0.284798	25%	0.160091		
58%	0.099058	58%	0.343593	58%	0.297844		
75%	0.175737	75%	0.354827	75%	0.352268		
max	0.366078	max	0.367706	max	0.367724		
Name :	predictive_unc_out, dtype: float64	Name: pr	edictive_unc_out, dtype: floa	at64 Name:	predictive_unc_out,	dtype: float64	

The next question is "how to use these uncertainty values to fix the false positive filtration issue"?

1169.0 1.0 1.0 (0.9608362663336072 , 0.0167069364060149 ,
660.0 1.0 1.0 (0.9598968625068665 , 0.0200239749043437)
559.0 1.0 1.0 (0.972375988960266 , 0.0251415324887267)
577.0 1.0 1.0 (0.9828186631202698 , 0.0266482426567068)
500.0 1.0 1.0 (0.9800212979316713 , 0.0271233179453896)
770.0 1.0 1.0 (0.9784590005874634 , 0.0272263334816144)
236.0 1.0 1.0 (0.9633317589759828 , 0.0280264249865703)
597.0 1.0 1.0 (0.974230170249939 , 0.0301422853449366)
238.0 1.0 1.0 (0.9778905510902404 , 0.030943173810184)
573.0 1.0 1.0 (0.9571858048439026 , 0.0322401585060153)
742.0 1.0 1.0 (0.9547353982925416 , 0.0367057303005549)
1054.0 1.0 1.0 (0.974616289138794 , 0.0398652718347465)
1331.0 1.0 1.0 (0.9473590850830078 , 0.0433458915435773)
579.0 1.0 1.0 (0.968421757221222 , 0.0476049305169327)
1157.0 1.0 1.0 (0.9297662973403932 , 0.0489453594022135)
94.0 1.0 1.0 (0.9841968417167664 , 0.0510306827585265)
99.0 1.0 1.0 (0.967397689819336 , 0.0535892701838277)
1187.0 1.0 1.0 (0.9521318078041076 , 0.0636437384511407)
528.0 1.0 1.0 (0.9391631484031676 , 0.066620227034892)
1121.0 1.0 1.0 (0.9164852499961852 , 0.0705890700726293)
1057.0 1.0 1.0 (0.9609205722808838 , 0.0802505084974802)
414.0 1.0 1.0 (0.812978982925415 , 0.081460339762227)
467.0 1.0 1.0 (0.953866720199585 , 0.0844247870401106)
1155.0 1.0 1.0 (0.7676697373390198 , 0.0990576612115126)
20.0 1.0 1.0 (0.9529691338539124 , 0.0993099416542683)
1107.0 1.0 1.0 (0.8964836597442627 , 0.1094783417498151)
569.0 1.0 1.0 (0.923535704612732 , 0.1126134460854173)
224.0 1.0 1.0 (0.8990851044654846 , 0.1189801196792885)
333.0 1.0 1.0 (0.9325357675552368 , 0.1193484347387036)
323.0 1.0 1.0 (0.9021071791648864 , 0.1356616176612773)
563.0 1.0 1.0 (0.8537898063659668 , 0.1390569551607128)
688.0 1.0 1.0 (0.8205998539924622 , 0.1506043838108364)
310.0 1.0 1.0 (0.8858692646026611 , 0.1548434509196032)
632.0 1.0 1.0 (0.7768675684928894 , 0.1657737582232674)
89.0 1.0 1.0 (0.873923659324646 , 0.1729220861542172)
567.0 1.0 1.0 (0.8919172883033752 , 0.1785520589750137)
509.0 1.0 1.0 (0.7880885601043701 , 0.1961830362571335)
716.0 1.0 1.0 (0.7272935509681702 , 0.1965394816717129)

Can we use uncertainty to remove false positives?

Uncertainty (MonteCarlo Dropout) — T=5

1 means False Positive; 0 means True Positive; Pred means prediction.

(Label: 1, Pred: 1)	alarms predicted as false alarms (Label: 0, Pred: 1)	alarms predicted as real alarms (Label: 1, Pred: 0)
count 47.00000 Imean 0.121327 Imean 0.121327 Imean 0.151327 Imean 0.151327 Imean 0.151327 Imean 0.15132 Imean 0.15132 Imean 0.15132 Name: predictive_unc_out, dtype: float6	count 31.000000 mon 0, 3304/0 min 0, 095065 25% 0, 24758 56% 0, 24758 56% 0, 245533 75% 0, 25726 max 0, 35726 Mone: predictive_unc_out, dtype: floot64	count 24.00000 mean 0.251706 min 0.251706 min 0.275170 min 0.477510 25% 0.100001 55% 0.277544 75% 0.352263 max 0.35724 Name: predictive.unc.out, dtype: fil
The next question is "how to filtration issue"?	This list is ordered descending order of False Positive idx_alert, Label, Pred Unc)	≥ <u>positive</u> by the c, d, (P_fp,

1189.0 1.0 1.0 (0.9808582663536072 , 0.0167069364060149)
660.0 1.0 1.0 (0.9598968625068665 , 0.0200239749043437)
559.0 1.0 1.0 (0.972375988960266 , 0.0251415324887267)
577.0 1.0 1.0 (0.9828186631202698 , 0.0266482426567068)
500.0 1.0 1.0 (0.9800212979316713 , 0.0271233179453896)
770.0 1.0 1.0 (0.9784590005874634 , 0.0272263334816144)
236.0 1.0 1.0 (0.9633317589759828 , 0.0280264249865703)
597.0 1.0 1.0 (0.974230170249939 , 0.0301422853449366)
238.0 1.0 1.0 (0.9778905510902404 , 0.030943173810184)
573.0 1.0 1.0 (0.9571858048439026 , 0.0322401585060153)
742.0 1.0 1.0 (0.9547353982925416 , 0.0367057303005549)
1054.0 1.0 1.0 (0.974616289138794 , 0.0398652718347465)
1331.0 1.0 1.0 (0.9473590850830078 , 0.0433458915435773)
579.0 1.0 1.0 (0.968421757221222 , 0.0476049305169327)
1157.0 1.0 1.0 (0.9297662973403932 , 0.0489453594022135)
94.0 1.0 1.0 (0.9841968417167664 , 0.0510306827585265)
99.0 1.0 1.0 (0.967397689819336 , 0.0535892701838277)
1187.0 1.0 1.0 (0.9521318078041076 , 0.0636437384511407)
528.0 1.0 1.0 (0.9391631484031676 , 0.0666620227034892)
1121.0 1.0 1.0 (0.9164852499961852 , 0.0705890700726293)
1057.0 1.0 1.0 (0.9609205722808838 , 0.0802505084974802)
414.0 1.0 1.0 (0.812978982925415 , 0.081460339762227)
467.0 1.0 1.0 (0.953866720199585 , 0.0844247870401106)
1155.0 1.0 1.0 (0.7676697373390198 , 0.0990576612115126)
20.0 1.0 1.0 (0.9529691338539124 , 0.0993099416542683)
1107.0 1.0 1.0 (0.8964836597442627 , 0.1094783417498151)
569.0 1.0 1.0 (0.923535704612732 , 0.1126134460854173)
224.0 1.0 1.0 (0.8990851044654846 , 0.1189801196792885)
333.0 1.0 1.0 (0.9325357675552368 , 0.1193484347387036)
323.0 1.0 1.0 (0.9021071791648864 , 0.1356616176612773)
563.0 1.0 1.0 (0.8537898063659668 , 0.1390569551607128)
688.0 1.0 1.0 (0.8205998539924622 , 0.1506043838108364)
310.0 1.0 1.0 (0.8858692646026611 , 0.1548434509196032)
632.0 1.0 1.0 (0.7768675684928894 , 0.1657737582232674)
89.0 1.0 1.0 (0.873923659324646 , 0.1729220861542172)
567.0 1.0 1.0 (0.8919172883033752 , 0.1785520589750137)
509.0 1.0 1.0 (0.7880885601043701 , 0.1961830362571335)
716.0 1.0 1.0 (0.7272935509681702 , 0.1965394816717129)

Can we use uncertainty to remove false positives and reduce de list of alerts?

Uncertainty (MonteCarlo Dropout) - T=5

1	m	Unsettainly distribution for this take alarms detected correctly (Label: 1, Pred: 1)	0 means	Uncertainty distribution for the alarms predicted as false alar (Label: 0, Pred: 1)	leans prediction	rtainty distribution for the false irms predicted as real alarms (Label: 1, Pred: 0)
00	unt	47.000000	coun	£ 31.000000	count 2	4.000000
100	an	0.121971	mean	0.308449	mean	0.254796
51	:d	0.095684	std	0.082733	std	0.105699
mi		0.016707	min	0.095695	min	0.077910
25	8	0.041606	25%	0.284798	25%	0.160091
56	1 5	0.099058	58%	0.343593	58%	8.297844
7	36	0.175737	75%	0.354827	75%	0.352268
100	x	0.366078	max	0.367706	max	0.367724
No	ane :	predictive_unc_out, dtype: fl	oat64 Name	: predictive_unc_out, dtype	float64 Name: pred	ictive_unc_out, dtype: float@

The next question is "how to use these uncertainty values to fix the false positive filtration issue"? (idx alert. Label. Pred. (P to. Unc)

1183.0 1.0 1.0 (0.3808382003330072 , 0.0107003304000143)
660.0 1.0 1.0 (0.9598968625068665 , 0.0200239749043437)
559.0 1.0 1.0 (0.972375988960266 , 0.0251415324887267)
577.0 1.0 1.0 (0.9828186631202698 , 0.0266482426567068)
500.0 1.0 1.0 (0.9800212979316713 , 0.0271233179453896)
770.0 1.0 1.0 (0.9784590005874634 , 0.0272263334816144)
236.0 1.0 1.0 (0.9633317589759828 , 0.0280264249865703)
597.0 1.0 1.0 (0.974230170249939 , 0.0301422853449366)
238.0 1.0 1.0 (0.9778905510902404 , 0.030943173810184)
573.0 1.0 1.0 (0.9571858048439026 , 0.0322401585060153)
742.0 1.0 1.0 (0.9547353982925416 , 0.0367057303005549)
1054.0 1.0 1.0 (0.974616289138794 , 0.0398652718347465)
1331.0 1.0 1.0 (0.9473590850830078 , 0.0433458915435773)
579.0 1.0 1.0 (0.968421757221222 , 0.0476049305169327)
1157.0 1.0 1.0 (0.9297662973403932 , 0.0489453594022135)
94.0 1.0 1.0 (0.9841968417167664 , 0.0510306827585265)
99.0 1.0 1.0 (0.967397689819336 , 0.0535892701838277)
1187.0 1.0 1.0 (0.9521318078041076 , 0.0636437384511407)
528.0 1.0 1.0 (0.9391631484031676 , 0.066620227034892)
1121.0 1.0 1.0 (0.9164852499961852 , 0.0705890700726293)
1057.0 1.0 1.0 (0.9609205722808838 , 0.0802505084974802)
414.0 1.0 1.0 (0.812978982925415 , 0.081460339762227)
467.0 1.0 1.0 (0.953866720199585 , 0.0844247870401106)
1155.0 1.0 1.0 (0.7676697373390198 , 0.0990576612115126)
20.0 1.0 1.0 (0.9529691338539124 , 0.0993099416542683)
1107.0 1.0 1.0 (0.8964836597442627 , 0.1094783417498151)
569.0 1.0 1.0 (0.923535704612732 , 0.1126134460854173)
224.0 1.0 1.0 (0.8990851044654846 , 0.1189801196792885)
333.0 1.0 1.0 (0.9325357675552368 , 0.1193484347387036)
323.0 1.0 1.0 (0.9021071791648864 , 0.1356616176612773)
563.0 1.0 1.0 (0.8537898063659668 , 0.1390569551607128)
688.0 1.0 1.0 (0.8205998539924622 , 0.1506043838108364)
310.0 1.0 1.0 (0.8858692646026611 , 0.1548434509196032)
632.0 1.0 1.0 (0.7768675684928894 , 0.1657737582232674)
89.0 1.0 1.0 (0.873923659324646 , 0.1729220861542172)
567.0 1.0 1.0 (0.8919172883033752 , 0.1785520589750137)
509.0 1.0 1.0 (0.7880885601043701 , 0.1961830362571335)
716 0 1 0 1 0 (0 7772935509681702 0 1965394816717129)

Can we use uncertainty to remove false positives and reduce de list of alerts?

Uncertainty (MonteCarlo Dropout) - T=5

1 mt	Incertainly distribution (as the fame ()) alarms detected correctly (Label: 1, Pred: 1)	neans T Uncertainty distribution for the real as ma predicted as false as ms leans prediction arms predicted as (Label: 0, Pred: 1) (Label: 1, Pre	n for the false real alarms d: 0)
count	47.000000	count 31.000000 count 24.000000	
mean	0.121971	mean 0.300449 mean 0.254796	
std	0.095684	std 0.082733 std 0.105699	
min	0.016707	min 0.095695 min 0.077910	
25%	0.041606	25% 0.284798 25% 0.160091	
58%	0.099858	58% 0.343593 58% 0.297044	
75%	0.175737	75% 0.354827 75% 0.352268	
max	0.366078	max 0.367706 max 0.367724	
Noma : r	medicking out due float	Nome: predictive unc out dtype: floot64 Nome: predictive unc out	dtune: float64

The next question is "how to use these uncertainty values to fix the false positive filtration issue"? idx alert.label.Pred. (P fp. Unc)

One way is to simply output the prediction, prob_fp and uncertainty together with the alert information and leave to the user to make a decision (but now with more information).

1189.0 1.0 1.0 (0.9808582663536072 , 0.0167069364060149)
660.0 1.0 1.0 (0.9598968625068665 , 0.0200239749043437)
559.0 1.0 1.0 (0.972375988960266 , 0.0251415324887267)
577.0 1.0 1.0 (0.9828186631202698 , 0.0266482426567068)
500.0 1.0 1.0 (0.9800212979316713 , 0.0271233179453896)
770.0 1.0 1.0 (0.9784590005874634 , 0.0272263334816144)
236.0 1.0 1.0 (0.9633317589759828 , 0.0280264249865703)
597.0 1.0 1.0 (0.974230170249939 , 0.0301422853449366)
238.0 1.0 1.0 (0.9778905510902404 , 0.030943173810184)
573.0 1.0 1.0 (0.9571858048439026 , 0.0322401585060153)
742.0 1.0 1.0 (0.9547353982925416 , 0.0367057303005549)
1054.0 1.0 1.0 (0.974616289138794 , 0.0398652718347465)
1331.0 1.0 1.0 (0.9473590850830078 , 0.0433458915435773)
579.0 1.0 1.0 (0.968421757221222 , 0.0476049305169327)
1157.0 1.0 1.0 (0.9297662973403932 , 0.0489453594022135)
94.0 1.0 1.0 (0.9841968417167664 , 0.0510306827585265)
99.0 1.0 1.0 (0.967397689819336 , 0.0535892701838277)
1187.0 1.0 1.0 (0.9521318078041076 , 0.0636437384511407)
528.0 1.0 1.0 (0.9391631484031676 , 0.066620227034892)
1121.0 1.0 1.0 (0.9164852499961852 , 0.0705890700726293)
1057.0 1.0 1.0 (0.9609205722808838 , 0.0802505084974802)
414.0 1.0 1.0 (0.812978982925415 , 0.081460339762227)
467.0 1.0 1.0 (0.953866720199585 , 0.0844247870401106)
1155.0 1.0 1.0 (0.7676697373390198 , 0.0990576612115126)
20.0 1.0 1.0 (0.9529691338539124 , 0.0993099416542683)
1107.0 1.0 1.0 (0.8964836597442627 , 0.1094783417498151)
569.0 1.0 1.0 (0.923535704612732 , 0.1126134460854173)
224.0 1.0 1.0 (0.8990851044654846 , 0.1189801196792885)
333.0 1.0 1.0 (0.9325357675552368 , 0.1193484347387036)
323.0 1.0 1.0 (0.9021071791648864 , 0.1356616176612773)
563.0 1.0 1.0 (0.8537898063659668 , 0.1390569551607128)
688.0 1.0 1.0 (0.8205998539924622 , 0.1506043838108364)
310.0 1.0 1.0 (0.8858692646026611 , 0.1548434509196032)
632.0 1.0 1.0 (0.7768675684928894 , 0.1657737582232674)
89.0 1.0 1.0 (0.873923659324646 , 0.1729220861542172)
567.0 1.0 1.0 (0.8919172883033752 , 0.1785520589750137)
509.0 1.0 1.0 (0.7880885601043701 , 0.1961830362571335)
716.0 1.0 1.0 (0.7272935509681702 , 0.1965394816717129)

Can we use uncertainty to remove false positives and reduce de list of alerts?

Uncertainty (MonteCarlo Dropout) - T=5

1 m	Lansertainly distribution tax this take () alarms detected correctly (Label: 1, Pred: 1)		Uncertainty, distribution for the real alarms predicted as false alarms (Can (Label: 0, Pred: 1)		Uncertainty distribution alarms predicted as r (Label: 1, Pred	for the false eal alarms : 0)
count	47.000000	count	31.000000	count	: 24.000000	
mean	0.121971	mean	0.308449	mean	0.254796	
std	0.095684	std	0.082733	std	0.105699	
min	0.016707	min	0.095695	min	0.077910	
25%	0.041606	25%	0.284798	25%	0.160091	
58%	0.099858	58%	0.343593	58%	0.297844	
75%	0.175737	75%	0.354827	75%	0.352268	
max	0.366078	max	0.367706	max	0.367724	
Name :	predictive_unc_out, dtype: floatE	54 Name:	predictive_unc_out, dtype: float64	4 None:	predictive_unc_out,	dtype: float64

The next question is "how to use these uncertainty values to fix the false positive filtration issue"? (idx_alert, Label, Pred, (P_fp, Unc)

One way is to simply output the prediction, prob_fp and uncertainty together with the alert information and leave to the user to make a decision (but now with more information).

The other is to use descriptive statistics to find a threshold. For instance, the min values for misclassifications are **0.095695** and **0.077910**. Therefore, if we pick a threshold of **0.075** (which is smaller than both min values), we can achieve a reduction of 20 out of 71 FPs — a reduction of 2% of take satism in the actual list of alerts provided by Infer.

Work in Progress Exploring Confidence Intervals Theory for Deep Learning to find the misclassified correctly

Outline

About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + AI

Best Practices For Patch Documentation

Alert Prioritisation

Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Assessment > 12 types of weaknesses

CWE-798 Use of Hard Coded Credentials \$username = "mariadb" CWE-269 Use of Hard Coded Password \$password = "ITQ23Rg" CWE-321 Use of Hard Coded Cryptographic Key \$key = "A67ANBD7" CWE-319 Use of HTTP without TLS \$req = "http://www.domain.org/secret" CWE-546 Suspicious Comment #https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=5383 CWE-326 Use of Weak Crypto Algorithms password => md5(\$debian_password) CWE-284 Invalid IP address Binding \$bind_host = "0.0.0" CWE-258 Empty Password in Configuration File \$rabbitmq_pwd = "" CWE-250 Admin by default \$user = "admin"	
CWE-269 Use of Hard Coded Password \$password = "!TQ23Rg" CWE-321 Use of Hard Coded Cryptographic Key \$key = "A67ANBD7" CWE-319 Use of HTTP without TLS \$req = " <u>http://www.domain.org/secret</u> " CWE-546 Suspicious Comment # <u>https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=5383</u> CWE-326 Use of Weak Crypto Algorithms password => md5(\$debian_password) CWE-284 Invalid IP address Binding \$bind_host = "0.0.0" CWE-258 Empty Password in Configuration File \$rabbitmq_pwd = "" CWE-250 Admin by default \$user = "admin"	
CWE-321 Use of Hard Coded Cryptographic Key \$key = "A67ANBD7" CWE-319 Use of HTTP without TLS \$req = "http://www.domain.org/secret" CWE-346 Suspicious Comment #https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=5383 CWE-326 Use of Weak Crypto Algorithms password => md5(\$debian_password) CWE-284 Invalid IP address Binding \$bind_host = "0.0.0.0" CWE-258 Empty Password in Configuration File \$rabbitmq_pwd = "" CWE-250 Admin by default \$user = "admin"	
CWE-319 Use of HTTP without TLS \$req = "http://www.domain.org/secret" CWE-546 Suspicious Comment #https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=5383 CWE-326 Use of Weak Crypto Algorithms password => md5(\$debian_password) CWE-284 Invalid IP address Binding \$bind_host = "0.0.0.0" CWE-258 Empty Password in Configuration File \$rabbitmq_pwd = "" CWE-250 Admin by default \$user = "admin"	
CWE-546 Suspicious Comment #https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=5383 CWE-326 Use of Weak Crypto Algorithms password => md5(\$debian_password) CWE-284 Invalid IP address Binding \$bind_host = "0.0.0.0" CWE-258 Empty Password in Configuration File \$rabbitmq_pwd = "" CWE-250 Admin by default \$user = "admin"	
CWE-326 Use of Weak Crypto Algorithms password => md5(\$debian_password) CWE-284 Invalid IP address Binding \$bind_host = "0.0.0.0" CWE-258 Empty Password in Configuration File \$rabbitmq_pwd = "" CWE-250 Admin by default \$user = "admin"	<u>92</u>
CWE-284 Invalid IP address Binding \$bind_host = "0.0.0.0" CWE-258 Empty Password in Configuration File \$rabbitmq_pwd = "" CWE-250 Admin by default \$user = "admin"	
CWE-258 Empty Password in Configuration File \$rabbitmq_pwd = "" CWE-250 Admin by default \$user = "admin"	
CWE-250 Admin by default \$user = "admin"	
CWE-521 Weak Password pwd => "12345"	
CWE-1007 Homoglyphs Detection (typo-squatting attacks) \$source = " <u>http://deb.debian.org/debian</u> "	
CWE-829 Malicious Dependencies \$postgresql_version = 8.4	

🔰 @rmaranha

Motivation > Automated Security Weakness Detection in Puppet

Focus on **Puppet**

•

- Lightweight Solution Available (called **SLIC**) [Rahman et al., ICSE'19] 99% of precision and accuracy in an oracle dataset
 - SLIC detects 7 types of weaknesses.

1st question: How does SLIC perform on a new dataset?

😏 @rmaranhao

Study 1 > Validation with Students

1419 GitHub repositories (~34k Puppet Scripts).

Found **31990 security warnings** on 9144 of Puppet scripts.

Table 2: Breakdown of warnings reported by SLIC.

Rule	#	%
Hard-coded secrets	22365	69.9
Use of HTTP without TLS	3757	11.7
Suspicious comments	2780	8.7
Use of Weak Crypto. Algos.	1489	4.7
Invalid IP Address Binding	769	2.4
Empty Password	684	2.1
Admin by default	146	0.5
Total	31990	100

😏 @rmaranhao

Study 1 > Validation with Students

2 authors validated a total of 502 warnings.

Two samples: proportional and uniform.

Table 3: Performance of SLIC. (Validation with Students)

SLIC	proportional		uniform			
Rule	#TP	#FP	Pr.	#TP	#FP	Pr.
Hard-coded secrets	122	52	0.70	26	10	0.72
Use of HTTP without TLS	9	20	0.31	10	26	0.28
Suspicious comments	10	12	0.45	8	28	0.22
Use of Weak Crypto. Algorithms	7	4	0.64	25	11	0.69
Invalid IP Address Binding	6	0	1.00	28	8	0.78
Empty Password	4	2	0.67	21	15	0.58
Admin by default	1	1	0.50	21	15	0.58
Total	159	91	0.64	139	113	0.55

Precision decreased from 99% to 64%.

🔰 @rmaranhao

Study 1 > Validation with Students

2 authors validated a total of 502 warnings.

Two samples: proportional and uniform.

proportional uniform		m			
#TP	#FP	Pr.	#TP	#FP	Pr.
122	52	0.70	26	10	0.72
9	20	0.31	10	26	0.28
10	12	0.45	8	28	0.22
7	4	0.64	25	11	0.69
6	0	1.00	28	8	0.78
4	2	0.67	21	15	0.58
1	1	0.50	21	15	0.58
159	91	0.64	139	113	0.55
	<i>pro</i> #TP 122 9 10 7 6 4 1 159	projection #TP #FP 122 52 9 20 10 12 7 4 6 0 4 2 1 1 159 91	provention #FP #FP 122 52 0.70 9 20 0.31 10 12 0.45 7 4 0.44 6 0 1.00 4 2.0 0.67 1 1 0.50 159 91 0.64	Propertional Properitional Propertional Properindex Propertional Propertional<	proventional #TP #TP #TP #TP #FP *TP #TP #PP 122 52 0.70 26 10 9 20 0.31 10 26 10 12 0.45 8 28 7 4 0.64 25 11 6 0 1.00 28 8 4 2 0.67 21 15 1 1 0.50 21 5 159 91 0.64 139 113

Precision decreased from 99% to 64%.

Maybe we don't have enough context?!

🏏 @rmaranhao

InfraSecure v0.1.0 > Design Choices

Table 6: Performance of INFRASECURE v0.1.0.

InfraSecure v0.1.0	pro	oportio	nal	ı	ıniforr	п
Rule	#TP	#FP	Pr.	#TP	#FP	Pr.
Hard-coded secrets	118	22	0.84	24	4	0.86
Use of HTTP without TLS	8	17	0.32	9	23	0.28
Suspicious comments	5	2	0.71	6	10	0.38
Use of Weak Crypto. Algorithms	5	2	0.71	23	2	0.92
Invalid IP Address Binding	6	0	1.00	28	1	0.97
Empty Password	4	2	0.67	21	15	0.58
Admin by default	1	1	0.50	20	15	0.57
Total	147	46	0.76	131	70	0.65

Precision increased!

Can we improve even more? Let's ask practitioners!

🔰 @rmaranhao

Methodology > Improve the linter with Practitioners' Feedback

Practitioners Study 3 > Validation with Practitioners InfraSecure v1.0.0 > More feedback and improvements Validate InfraSecure v0.1.0 alerts Use of HTTP without TLS is fine sometimes Customizable rule (whitelist with credible sources) inWhitelist(token.value) Experiment shared with the Puppet communities on Slack Apturl => "http://deb.debian.org/debian SLIC reports every single occurence of http:// as unsafe. (puppet.community.slack.com) and Reddit (r/puppet). 14 participants [Practitioner] "I think it is fine if localhost is used. Otherwise TLS should be mandatory. All Prolific Validation of the big financial organizations will not use this check because they cannot create internal 117 participants 339 warnings certs or use letsencrypt." [Practitioner] "By default, it's unsafe to not use HTTPS. But for internal testing/development Pre-screening: Specific Industries (e.g., Computer and Electronics), experience with configuration it is acceptable to me to not use HTTPS all the time." management tools, security and infrastructure as a service; and, a guizz of three programming questions about different puppet configurations. (check the replication package)

🈏 @rmaranhao

😏 @rmaranhao

InfraSecure v1.1.0 > New Patterns (Extension)

Weak Pas	sword	isStrongPwd()	Uses PHP algorithm developed by Thomas Hruska.
Homograp supply cha	oh Attacks in attack	hasCyrillic()	Social engineering attack that purposely uses misspelt domains for malicious purposes.
Malicious supply cha	Dependencies in attack	isResource() isMalicious()	Our database integrates malicious versions of software for 33 different packages used by the Puppet community (e.g., rabbitmq, apt, cassandra, postgresql, etc).
CWE-521	Weak	Password	pwd => "12345"
CWE-1007	Homoglyphs Detection	on (typo-squatting attac	ks) \$source = " <u>http://deb.debian.org/debian</u> "
CWE-829	Malicious	Dependencies	<pre>\$postgresql_version = 8.4</pre>

🔰 @rmaranhao

Study 3 > Validation with Practitioners

Table 8: Performance of INFRASECURE (v1.1.0). (Validati with Practitioners)			alidation	
Rule	#TP	#FP	#Unsure	Precision
Hard-coded secrets	28	8	3	0.78
Use of HTTP without TLS	32	3	2	0.91
Suspicious Comments	16	15	7	0.52
Use of Weak Crypto. Algo.	33	3	6	0.92
Invalid IP Address Binding	26	8	6	0.77
Empty Password	33	3	1	0.92
Admin by default	30	6	6	0.83
Malicious Dependencies	25	6	3	0.81
Weak Password	32	2	0	0.94

Table 9: Precision obtained in different cycles of feedback collection for INFRASECURE.

255 54 34

0.83

Total

Participants	version	Precision
Research Team, Owners of OSS Projects, Pup-	v0.1.0	76%
Practitioners (cycle 1)	v1.0.0	79%
Practitioners (cycle 2)	v1.1.0	83%

Precision increased between iterations (28% -> 76% -> 79% -> 83%)

More Anti-Patterns

Malicious dependencies, Homograph Attacks and Weak Passwords

More Customisation Whitelist

😏 @rmaranhao

				Table 7: INFRASECURE rules to detect security smells.
	CWE	Weakness Nar	ne	Rule
🗳 Rules	CWE-321 I	lard-coded Key		$(isVarAssign(t) \lor isAtrAssign(t)) \land isKey(t.prev_code_token) \land isNonSecret(t.prev_code_token) \land !isPlace-holder(t.next_code_token) \land !isPlace-holder(t.next_c$
	CWE-259 1	Hard-coded Pas	sword	$(isVarAssign(t) \lor isAtrAssign(t)) \land isPassword(t.prev_code_token) \land isNonSecret(t.prev_code_token) \land !isPlace-holder(t.next_code_token) \land !isUserDefault(t.next_code_token) \land !invalidSecret(t.next_code_token) \land !isVarAssign(t) $
	CWE-798 1	lard-coded Use	rnames	$(isVarAssign(t) \lor isAtrAssign(t)) \land isUser(t.prev_code_token) \land isNonSecret(t.prev_code_token) \land !isPlace-holder(t.next_code_token) \land !isUserDefault(t.next_code_token) \land !invalidSecret(t.next_code_token) \land !isUserDefault(t.next_code_token) \land !invalidSecret(t.next_code_token) \land !i$
Table 5: INFRASECUR	e's list of string and AST String Pattern	patterns.	ts	(isVarAssign(t) ∨ isAtrAssign(t)) ∧ (isKey(t.prev_code_token) ∨ isPassword(t.prev_code_token) ∨ is- User(t.prev_code_token)) ∧ !isPlaceholder(t.next_code_token) ∧ !isUserDefault(t.next_code_token) ∧ !invalidSe- cretit next_code_token)
isAdmin(t.value)	root admin		TT C	(i-V-A-sim(4)) (i-A+A-sim(4)) (i-UPPP0(A-sim(-s-d-A-form)) (i-UP)(i-A-dist(A-sim(-a-d-A-form)))
isNonSecret(t.value)	gpg path type buff zone mode	tag header	iout 11.5	(is varAssign(t) v isAttAssign(t)) / isF111(t.text_code_token) / :intw intensi(t.text_code_token)
isPassword(t value)	pass(word \$) pwd		tents	(i.M.e.A.exim(4.mm, e.d., 4.d.m))) (i.4.4.4.a.im(4.mm, e.d., 4.d.m)) (i.i.FunctionColl(4.mm), e.d., 4.d.m))) 4 lie
isUser(t.value)	user/usr		to. Aigo.	(isvarAssign(r.prev_code_token) ∧ isAtrAssign(r.prev_code_token) ∨ isrunctionCall(r.next_code_token)) ∧ is- CheckSum(t.prev_code_token) ∧ isWeakCrypto(t.next_code_token)
isKey(t.value)	(pvt priv)+.*(cert key rsa secre	t ssl)+	Binding	/ic/lar4.scim(t) // icAtr4.scim(t)) A isImvalidIPBind(t next, cade taken)
isPlaceholder(t.value)	\${*} (\$)?.*::.*(::)?		bilding	(isVarAssign(r) v isAtrAssign(r)) / isBtvarburDind(Linex_code_ioXen)
hasCyrillic(t.value)	^(http(s)?://)?.*\p{Cyrillic}+			(isvarAssign(i) v isAtrAssign(i)) ~ isPassword(<i>i.prev_code_token</i>) ~ isEmptyPassword(<i>i.prev_code_token</i>)
isInvalidIPBind(t.value)	^((http(s)?://)?0.0.0.0(:\d{1,5})?	')\$		(isVarAssign(t) ∨ isAtrAssign(t)) ∧ isNonSecret(t.prev_code_token) ∧ isUser(t.prev_code_token) ∧ !isPlace- helder(t mut and telum) t is therein(t mut and telum)
isSuspiciousWord(t.value)	hack fixme ticket bug checkm	e secur debug	ke	(isVaråeeim(t) \/ isAtråeeim(t)) & harCvrillic(t next_code_token)
i-WashCounts(tushus)	defect/weak		1.0	
isCheckSum(t value)	(sna1)mu3)			(isvarAssign(t) ∨ isAtrAssign(t)) ∧ isPassword(t.prev_code_token) ∧ isStrongPwd(t.next_code_token)
isHTTP(t.value)	^http://.+		encies	isResource(t) ∧ isVersion(t.prev_code_token) ∧ isMalicious(t.next_code_token)
isUserDefault(<i>t.value</i>)	pe-puppet pe-webserver pe- postgres pe-console-services orchestration-services pe-acc bolt-server	puppe pe- e-serv Che	eck our	At is in the last of comparance sale domains whiteras, a the URL is in the Whitelds, an after should not be raised. pt is in the database of malicious dependencies. paper for more! Tables 5 & 7
invalidSecret(t.value)	undefined unset www-data v www no yes [] undef true fals changeme none	wwrun se changeit		
isStrongPwd(t.value) 24	StrongPassword::StrengthChe	cker(t.value)		😏 @rmaranhao
isEmptyPassword(t.value)	t.value == ""			

<section-header><section-header><image><image><image><image><image><text><text><text>

Work in Progress

Exploring dynamic taint analysis to keep track of vaults (storage where secrets can be stored to not be hard-coded in the scripts).

Outline

About me

Research Overview Collection of SAST Tools Software Vulnerability Detection + AI Best Practices For Patch Documentation Alert Prioritisation Infrastructure-as-code (IaC) scripts Fixing Vulnerabilities Potentially Hinders Software Maintainability

MOTIV More com

Fixing Vulnerabilities Potentially Hinders Software Maintainability (Do security patches have a negative impact in software maintainability?)

BUT improving software set that might affect software may	ecurity is not a trivial task and requires implementing patches intainability.
PREVIOUS RESEARCH	34% of security patches performed introduce new problems and 52% are incomplete and do not fully secure systems.
OUR HYPOTHESIS	Some of these patches may have a negative impact on the software maintainability and, possibly, even be the cause of the introduction of new vulnerabilities — harming software reliability and introducing technical debt.
MAIN CONTRIBUTION TO THE SE COMMUNITY	99 Evidence that supports the trade-off between security and maintainability: developers may be hindering software maintainability while patching vulnerabilities.

😏 @rmaranhao

Fixing Vulnerabilities Potentially Hinders Software Maintainability (Do security patches have a negative impact in software maintainability?)

<pre>1 static int sal_scan_clienthello_tlsext(SSL *s, PAC</pre>	();
<pre>res of code // [imitp] // [i</pre>	0;
<pre>les of code 3 + 'sk.OSEP.RESPID.prop.free(s->Elext_ocsp_ids, COSP.RESPID_free); /clomatic 4 + if (PACKET_remaining(kresponder_id_list) > 0) (</pre>	();
10 + } else { 11 + s->tlsext_ocsp_ids = NULL; 12 + }	
<pre>display="block"> while (PACKT_remaining(&responder_id_list) > 0 OCSP_RESPID +id; PACKET responder_id; PACKET responder_id; const unsigned char *id_data; if (!PACKT_get_length_prefixed_2(&responder_id) </pre>	id_list, & ler_id) ==

RQ1: What is the impact of security patches on the maintainability of open-source software? Guideline/Metric

- There is a very significant number of patches with negative impact on software maintainability per guideline—between 10% and 40%.
- Hard time designing/implementing patches that respect the limit bounds of branch points and function/module sizes.

RQ1: What is the impact of security patches on the maintainability of open-source software? Guideline/Metric

There is a very significant number of patches with negative impact on software maintainability per guideline—between 10% and 40%.

Hard time designing/implementing patches that respect the limit bounds of branch points and function/module sizes.

Developers forget to use the Introduce Parameter Object patch pattern when patches require to input new information to a function/class.

• X % The percentage of patches that hinder software maintainability per guideline.

• X % The percentage of patches that hinder software maintainability per guideline.

There is a very significant number of patches with negative impact on software maintainability per guideline—between 10% and 40%.

Hard time designing/implementing patches that respect the limit bounds of branch points and function/module sizes.

Developers forget to use the Introduce Parameter Object patch pattern when patches require to input new information to a function/class.

Lack of encapsulation to hide implementation details and make the system more modular.

• X % The percentage of patches that hinder software maintainability per guideline.

RQ1: What is the impact of security patches on the maintainability of open-source software? Guideline/Metric

There is a very significant number of patches with negative impact on software maintainability per guideline – between 10% and 40%.

Hard time designing/implementing patches that respect the limit bounds of branch points and function/module sizes.

Developers forget to use the *Introduce Parameter Object* patch pattern when patches require to input new information to a function/class.

Lack of encapsulation to hide implementation details and make the system more modular.

Developers reuse code by copying and pasting existing code fragments instead of using the Extract method refactoring technique. Clone detection tools may help with this problem.

• X % The percentage of patches that hinder software maintainability per guideline.

RQ1: What is the impact of security patches on the maintainability of open-source software? Overall Score - M(v)

The larger number of negative cases may be explained by guidelines with higher concentrations of negative cases with higher amplitudes.

406 patches (41.9%)
 188 patches (19.4%)
 375 patches (38.7%)

Security patches may have a negative impact on the maintainability of open-source software.

p-value = 0.044 < 0.05

RQ1: What is the impact of security patches on the maintainability of open-source software? Severity, Programming Language

Higher severity vulnerabilities patches may have a more negative impact on maintainability – high/ medium severity vulnerabilities may need more attention than low severity while patching.

♥ Overall languages have a considerable amount of cases that negatively impact maintainability between 35% to 50%—which confirms the need for better/more secure programming languages.

🔰 @rmaranhao

END. WHAT SHOULD YOU DO NEXT?

 \hbar Follow the best practices. Developers harm software maintainability because they still not consider some quality aspects in their solutions/ patches.

A Prioritise high and medium severity vulnerabilities.

Pay special attention to the types of software vulnerabilities that are more prone to have an impact on software vulnerability.

⁵ Build tools for Patch Risk Assessment Bases on Source Code Metrics, Static Analysis features and Software Vulnerability Metadata.

Make maintainable security part of the CS curricula.

Build better and more secure programming languages.

😏 @rmaranhao

That's it, folks!

Any questions? Ask now.

In the future, we can get in touch by email: <u>rui@computer.org</u>