@ TECNICO FCT P()H'l‘() Outllne

Iis LI S BOA eaTecnologia FEJP FACULDADE DE ENGENHARIA

s - UNIVERSIDADE DO PORTO

About me

Research Overview

Making Software More Secure and Collection of SAST Tools
Security Engineers’ Lives Easier Software Vulnerability Detection + Al

Al (R Best Practices For Patch Documentation

(@IETET L)
Alert Prioritization
Infrastructure-as-code (IaC) scripts

The 9th Intenational School on Software Engineering (ISE 2023) Fixing Vulnerabilities Potentially Hinders Software Maintainability

July 10-12, 2023

Outline

Why focusing on security (during your PhD)?

About me The number of new vulnerabilities is growing over time and it takes a long time to
patch vulnerabilities regardless of their severity.

Research Overview
@ Lack of security experts (gap of 3 million jobs globally).

erlzalEn e ek # Adoption is still low (high false positive rates, lack of education and training, lack of

Software Vulnerability Detection + Al e

Best Practices For Patch Documentation @ Knowledge is not structured, updated and centralised.

s L I No fai i t tools (difficult to trust k how they fair).
Alert Prioritization .~ No fair comparison between tools (difficult to trust and know how they fair)

. % Costs associated with software vulnerabilities.
Infrastructure-as-code (laC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

@rmaranhao

Research Overview

Software Vulnerability Data

Static Application Security Testing Tools

Infrastructure-as-

Tooling
code scripts Tooling Collection
Puppeh Characterisation

Artificial Intelligence

Impact of
Probing Analysis Attributes in ML S
models

Maintainable Security

Risk Analysis Impact of Patches.

@rmaranhao

Systematic Survey on SAST Tools

(On the road to improve static analyzers adoption for security)

SAST tools: Static Application Security Testing tools (aka, static analysers for

security).

Two of the main issues for the low adoption of SAST tools are:

1) the lack of complete documentation (approaches, performance rates, scalability,

coverage);

2) the lack of structured, updated and centralised knowledge.

@rmaranhao

Outline

About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + Al
Best Practices For Patch Documentation
Alert Prioritisation
Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Systematic Survey on SAST Tools

(On the road to improve static analyzers adoption for security)

In order to get a better overview of the SAST scope, we ran a systematic survey on the
topic to answer the following research questions:

RQ1: What are the underlying techniques used by SASTs?
RQ2: Which classes of vulnerabilities and programming languages are covered by the existing SASTs?

RQ3: Are the research outputs and codebases of SASTs publicly available?

RQ4: What conclusions can we draw on the performance of SASTs from the results presented in the selected
work?

@rmaranhao

RQ1: What are the underlying techniques used by SASTs? RQ2: Which classes of vulnerabilities and programming languages are covered by the existing SASTs?

« Pattern-based/AST Matchers
RATS, Flawfinder, ITS4, Bandit, SLIC/ACID (> 40 tools)

Encapsulation |
« Flow Analysis (Control-, Data- and Taint Tope crecking
analysis)

Checkmarx, FindBugs, Polyspace Bug Finder, WAP, Pixy (> 40 tools) Symbelcieeuion
« Abstract Interpretation Model Checking
Astrée PolySpace Code Prover, Polyspace for Ada (> 10 tools)

AP Abuse.

£ Abstract nterpretation

* Model Checking "
MOPS, ESBMC, CBMC, JBMC (approx. 10 tools) Taint Anaiyeis

Time and State

Security Features

Type of Vulnerability

« Symbolic Execution
Infer, PVS-Studio (approx. 10 tools)

Dota-flow Analysis

Environment

« Hybrid Solutions (Static and Dynamic Analysis)
appScreener, CodeDX, PT Application Inspector, Veracode, Sparrow,
thunderscan (11 tools)

Code Quality

* Machine Learning Input Validation and Representation
Static Reviewer, VulDeePecker, DeepCode, TAP (4 tools)

« Source Code Query Tools

CodeQL, CppDepend (2 tools) ® . Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors
@rmaranhao

Table 7. SoSATs Empirical Validation Results
RQ3: Are the research outputs and codebases of SASTs publicly available?

Name SU Ty Technique(s) Vul Taxonomy (7+1) Real Attificial #TP sFP FPR R Recall Fscore Acc. Size Time

TSBNC Model Chedk (9 Tnput Valdation w6 2
ing SMT

7
and_ Representation; (o523

For approximately 40% (58/145) of the SASTSs, the codebase is not available which s v a ' . ??“d\ /‘(‘
makes their understanding, usage and extensibility more difficult. . w " ‘p"m . e
AppScan. terpretation and Representation e, Ces, :;v;)

We also collected the license of each tool. Only 6 tools did not have any type of wos s s 0 iion G ' e

license. More than 50% of the tools have an open-source license, i.e., tools than can e e Cwealiy
usually be used freely in research and in the industry

ing
JuliaSoft S Abstract In- (1) Input Validation
terpretation and Representation

RQ4: What conclusions can we draw on the performance of SASTs from Tiot Aul- (1) loput Validation

ysis; Range and Representation

the results presented in the selected work? 0z e he

(1) Time and State

. . . (1) Input Validation
Only 23 empirical validations were found for 23 tools. Overall, all tools reported False ndNpstaion
Positives. ' ey Y ’ : oo T
P b, Tunt snd Represetation o o ’ o
There is a preference for validating the tools with real data instead of artificial. However, SKRERISVE Daw () Colgully Cere - - C g e

analysis; pro- KLOC

empirical validations with real vulnerabilities are rare due to the low amounts of data— proroet
Saturn Control-flow (1) Code Quality - - - - - % 19h40m [116,

which sometimes may not be enough to assess the real performance of the tool. v e .
Datasets with more real data is needed to fairly assess the performance of SASTs. Lo

@rmaranhao

sis)
SLIC/ACID Pattern-based (1) Environment x - - - - - - - - [201]
scripts)

SplintLCLint U Annotations- (2) Input Validation C/Cr+ voaox - N)

! -
Table 7. SoSATs Empirical Validation Results cription: T000
- - Table 9. Unsound Static Analysis Tools (117 SoSATs were found) ated: no
N S0 Tope e Tedmim) Vol Tovonomy 00 s
ot o i (On the road to improve static analyzers adoption for security)
ESBMC S M 2009 Model Check- (3) Input Validation - acquired_by: Githu
ing SMT and Representation; Available acquired_in: 2019
Solver ‘Time and State; Code) AMNESIA W 2005 Souwce Dataflow Analy- (1) Input Validation Java 7 oin) B 7 Gwak Tniversity _of company: Semmle
Code ss and Representation Southern Califor- [type: Open-Source
Fowdroid U M 2013 Taint Track- (1) Encapsulation i il L reteves yenrs 2006
i Android Lint O 203 Soure Patternbased (2) AP Abuses Secu- Java v Apachevz G5t Google,Jetbrains [106] B e_year: 2006
HCLIBM S © 1998 Abstract In- (1) Input Validation Code ity Features .
AppSean frpreation. andRepreenation. AR B 22 Sl Duwlow dady- () CodeQuityEa Joe O B e o) 0 ammesiayam tools dta
> poy O Seven TS puidy b2l O android_lintyami tools data:
JBMC S M 2018 Model Check- (1) Errors A e Compe y O apexsecyami tools data 1 45 S A
JuliaSoft 5 © 2019 Abstract In- (1) Input Validation Environment pattern-based [appcheckeryam! tools data:
terpretation and Representation O ApCodesean O 2007 Source Pattern-based:) Toput Validation MultizChJava (bin) cc By G2 Blucindy &) 21 - Control-flow Analysis
- b
- Application O 209 Source Pattern-based (2) API Abuse; Secu- Multi: C/C++, / (C#) MIT * 3.4k, Microsolt (72) 4
KINT U M 02 Tent Amb o () Iput Validation 00 Cote sty Fatures o, o vor ~ Range Analysis D application_inspectoryami tools data: 231 academ|c
ysis; Range and Representation JvaSerpt, - Variant Analysis
Pythor - programming_languages: [appscreeneryam! tools data:
Mops s M 2002 Model Check- (1) Time and State Objective€, G S paperS
g DappSerecner © 205 Sowrce N/A (@) Tnput Validation x Pl Tl /(105-20% G5 S app [10] - D astreeyami tools data:
PhpSATE v om 2015 Taint y- () Input Validation Binary Emwn‘mml Java, Jav “ [attackflowyaml tools data:
and Representation Code Kotlin, - Java ools d
Pixy U M 2006 Taint Analy- (1) Input Validation AttackFlow © 2016 Souce TaintflowAnly- (4) Input Validation Multi: Net Java, X Paid - G2 AttackFlow un 32 - python DO bandityami tools data:
PysaPyre U @ 2020 Pattern- (1) Input Validation Securky Peggfils Selpt HIML O boonyam tools data:
baseds Taint and Representation Tmeand sy - kingdos:
Analysis bandit O 015 Sowrce Pattern based: (3) Input Validation Python v Apachevt / (¥bsmay % 28k Beyond Sccurity - Input Validation and Representation D brakeman_proyam! tools data:
SABER/SVF U M 2015 Data-flow (1) Code Quality Code. Control-flow and Representation; (Python) exist) P ~ API Abuse D brak road) o
nalysis OBoON M 2000 Source Integer range (1) Input Validation € /© BSD v G 78k University of Cal- (263, - Code Quality O c_c++_testyaml tools data:
Saturn, U M 2005 ControMflow (1)Code Quality Brakeman Pro © 2020 Source Dataflow Analy- (3) Tnput Validation Ruby. S Ruby) Paid; v * 5ok Brakeman, I [199] Environment
Analysis; Code s and Representation: Voo (Acquired by - input: Source Code D cargo_audityami tools data:
sis SN [cast_application_intelligence_platform_aip.yam| tools data:
> Sl httpsz//gtn.con/help/gta/about-1gta B conotyam
SplintLCLint U I 2002 Annotations- (2 Input Validation /s test © 199 Source Pattern-bascd: (2) Input Validation C/Cv+ x ‘Paid; Trial G2 Parasoft . [0 cbmc o Jogle dot

Systematic Survey on SAST Tools Outline

(On the road to improve static analyzers adoption for security)

A SASTs may disrupt the team’s productivity. About me

A Not Actionable. Research Overview

A\ Poor Usability.
Collection of SAST Tools

A\ Lack of structured and organised knowledge.

A Difficult to measure the coverage of the field. Software Vulnerability Detection + Al

A Scalabilty Issues. Best Practices For Patch Documentation
A Language and pattern dependent.

A\ Better tools for security are wanted. Alert Prioritisation
@ Artificial Intelligence has the potential to shift security left but still provides untrustworthy results. Infrastructure-as-code (IaC) scripts

M Risk Analysis based on code changes (use static analysis to locate the problem and collect features).

Fixing Vulnerabilities Potentially Hinders Software Maintainability
M New types of software (quantum, blockchain, infrastructure-as-code scripts).

@rmaranhao

Software Vulnerability Detection + Al Software Vulnerability Detection + Al

(Promises to shift security left in the SDLC) (Promises to shift security left in the SDLC)

We spent months performing experiments with deep learning algorithms like Code2vec Microsoft maintains a leaderboard with Defect Detection (Code-Code)

and CodeBERT for vulnerabilities in JavaScript code (collected from advisory results for different tasks and different Rark Model G = —

databases such as OSV and NVD). models trained and test on CodeXGLUE (a
C/C++ dataset).

SCI’apperSS httpS://github.Com/TQRG/security—patches—dataset Anonymous 20221117
Our results with the new dataset were Anonymaus 2oz
Many studies between 2017 and 2021 reported accuracy > 90% for the software again below 70%. UGLA& Columbi... 2021-04-02
vulnerability task with Al. 9 codeav SecurlyAvaroT... 2021-0809

We submitted our results with code2vec ode CodoXGLUE Toam 20200830
But the reality for us was a bit different. We could not even reach an accuracy of which were validated by the microsoft

70%. team.

D Coimbra, S Reis, R Abreu, C Pasareanu, H Erdogmus. On using distributed representations of source code for the detection of
C security vulnerabilities. International Workshop on Principles of Diagnosis (DX)

@rmaranhao @rmaranhao

Software Vulnerability Detection + Al Software Vulnerability Detection + Al
(Promises to shift security left in the SDLC) (Promises to shift security left in the SDLC)

ML Software Vulnerability Detection Pipeline built using TENET

We looked into the datasets of papers published in the software vulnerability + Al scope Data Gollection € i Analyss Oata Labeing & Static Anatysis

and we started to see a trend: = —
2 e s
SRS — — = fle 1240524020011 Q file_vul.241,10.241,30.unsaf

Il Lots of duplicates between the training and testing datasets that led to inflated results.
]

Which was later reported in the paper “Deep learning based vulnerability detection: Are we 3
there yet?” by S. Chakraborty et al. i Code Mutations (jscodeshift + JetBrains CLI))

\ J

Fig. 1. Tenet architecture with two short pipeline examples. The first pipeline uses lines of code as the granularity of a vulnerability and labels the samples
using static analysis with CodeQL. The second pipeline uses functions as the granularity of a vulnerability and generates labels using diff analysis.

@rmaranhao https://github.com/TQRG/tenet @rmaranhao

Software Vulnerability Detection + Al

(Promises to shift security left in the SDLC)

After spending time trying to fix the core problem with Al, we shifted our efforts to
explainability and probing analysis.

“How different data attributes impact traditional machine learning classifiers?” Sampling
Strategy, Distribution between classes, Granularity, Project Diversity, Multiplicity of
Software Vulnerabilities

‘BERT-based Models for Vulnerability Detection: Looking Beyond Validation Metrics”
Probing analysis to check if BERT-models encode semantic (unused vars, tainted vars,
vuln code) syntax (function, loop, conditional) and structural (complexity) information in
code samples at function level for different CWEs.

@rmaranhao

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with Al and SASTs validation and comparison.)

Many works have reported that commit metadata (including commit messages) are
not enough to classify security-related commits.

One study reported that it could only extract security-related words from 38% of the
commit messages; however, it uses a dataset of silent fixes (which naturally have more
cryptic messages).

Yet, none of the approaches looked carefully into the key information that could be
extracted from commit messages.

Therefore, we performed an analysis of security commit messages and best practices
application by security engineers.

@rmaranhao

Outline

About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + Al
Best Practices For Patch Documentation
Alert Prioritisation
Infrastructure-as-code (IaC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with Al and SASTs validation and comparison.)

We used Named Entity Recognition (NER), a natural language processing approach, to
identify and extract key information, called entities, from unstructured data (in this case,
text).

An entity can be any word or bag of words that refers to the same entity category. For
instance, different names of companies “Netflix”, “Google” or “Apple” are entities that
belong to the Company category.

We designed a set of category entities that ey, (Seeirty secwomd| issve riaw with
we tried to extract from commit messages.
_ entered via a prompt

Figure 3: Named Entity Recognition (NER) application exam-
ple for a security commit message.

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with Al and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches?

Table 1: Entity category names, rationale, and entity examples.

Category | Rationale

Entity Examples

SECWORD | Security-relevant words are usually used to describe the vulnerability and respective
fix (we used a large set of security-relevant words collected in previous work [18, 41]).

1dap injection, crlf injection, improper validation, com-
‘mand injection, cross-site scripting, sanitize, bypass

VULNID ity IDs are used to identif ties for different ecosystems in commit
messages: CVE, GHSA, OSV, PyPl, etc. We crafted rules for the different IDs patterns.

GHSA-269q-hmxg-m83q, CVE-2016-2512, CVE-2015-
8309, GHSA-9x4c-63pf-525f, OSV-2016-1

CWED Vulnerabilities usually belong to a weakness type. One common taxonomy used to

fore, we crafted rules to detect CWE IDs.

classify security weaknesses is the Common Weakness Enumeration (CWE) one. There-

CWE-119, CWE-20, CWE-79, CWE-189

SEVERITY usually have a severity assigned.

Tow, medium, high, critical

DETECTION are detected manually or using specific toos.

Manual, CodeQL, Coverity, 055-Fuzz, libfuzzer

SHA Commit hashes that reference older versions where the vulnerability was introduced
(OSV Schema [42]).

184773084564, 228a782c2dd0

ACTION A" commit usually implies an action, in the case of security, fixing a vulnerability
(corrective

fix, patch, change, add, remove, found, protect, update,
optimize, mitigate

FLAW Fixing a securit usually implies fixing a flaw.

defect, weakness, flaw, fault, bug, issue

“The GitHub issue/pull request number is sometimes referenced in the message and
can provide more i ion on the il

#2, #13245

by" and are important to know who to contact.

Contact e-mails of reviewers and authors usually appear after tags such as Reported-

johndoe123@gmail.com, ® m,adven
" . ’

Links to reports, blog posts, and bug-trackers references provide more
about the i

ttps://www hibrid iple_vulnerabil
ities_in_mantisbt.html

VERSION | Software versions are commonly referenced in commit messages

3.1.0,v3.2,v26.28, 163, 2.1.395

EC: Security specific entity categories; Type COM: Commit specific entity categories.

!Artificial e-mails generated with ChatGPT for compliance with General Data Protection Regulation (GDPR).

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with Al and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches?

To extract the entities for each category, we
used a Python library called Spacy—which

provides end-to-end pipelines for several II Ir
Tl oo Drooemine tagks toa: (oo fm
NER).

We built our own customized NER pipeline
for security commit messages.

(oo

Best Practices For Patch Documentation

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through

(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with Al and SASTs validation and comparison.)

for Vuln. Detection with Al and SASTs validation and comparison.)

RQ1. What information is being mentioned in public security patches? Analysis of 11036 commit messages. Do security engineers follow best practices to write security commit messages?

Table 4: Extraction Results

Finding 1. Security engineers use security-related words
in 61.2% of the security commit messages used to patch
software vulnerabilities.

Table 3: Best Practices to Write Generic Commit Messages

Category #Entities | #Commits
SECWORD 16126
ACTION

ID | Best Practice Standard
R C1 | The header should be prefixed with a type.

ders have security-related
on (ACTION).)

———-G—L—albed The message should ave a one-Tine Feader/subject

91% o o
Finding 2. Vulnerability IDs, Weakness IDs and Severity are eV ’ C3 | The message should ave a body.
rarely mentioned in security commit messages—although
important for manual and automated detection and prioriti- - S0 C4 | The message should mention the contact of the author
2ation. (signed-off-by and authored-by).

C5 | The message should mention the contact of the reviewer
(reviewed-by).

C6 | The message should mention references to issues or pull
Finding 3. No extraction of entities was performed from 8% requests.

of security commit messages mainly due to poorly written . C7 | The message should mention references bug trackers.
messages, misspelling issues and no clear connection with CWED o
security.

Best Practices For Patch Documentation

(Aiming to improve patch management triage systems and gather more data through
for Vuln. Detection with Al and SASTs validation and comparison.)

Do security engineers follow best practices to write security commit messages

1.78% of commit mq

Table 3: Best Practices to Write Generic Commit Messages

D

Best Practice Standard

C1

ve security-related

The header should be prefixed with a type. P

action (ACTION) ()

The message should have a one-line header/subject.
[21, 36, 38]

C3

The message should have a body. 36, 38]

C4

The message should mention the contact of the author

(signed-off-by and authored-by). 36, 38]

C5

The message should mention the contact of the reviewer 36, 38]

Finding 4. Security engineers, do not follow best practices
to write security commit messages in general. Even when
it seems they are, we concluded that key information is
missing—which indicates we need best practices for writing

better security commit messages.

mention references to issues or pull [38]

tention references bug trackers.

(38]

Description

Rationale

SECOM "

Usage of vuln-Fix at the beginming of
the header/subject to specify the fix is
related to a

A type should be assigned to cach commit [21]—which will make the identificaion of vulnerability fixes casier.
‘The vuln-Fix value was proposed by the Google OSV team during the feedback collection (F) phase. In addition,
4.10% of commits follow the cony commits convention “<type>(scope):”.

(Fields)

Tt should b 50 chars (max
72 chars), capitalized with no period in
the end and in the imperative form.

According to the common best practices for commit messages, it is important to summarize the purpose of the
commit in one line [36, 38]. In our best practices analysis, we observed that 100% of commit messages had an
‘header but only 38.85% had security-related words and represented an action.

Vuln-D

When available, e.g, CVE, OSV, GHSA,
and other formats.

"Adding the vulnerability ID to the header/subject can help fo localize the commit responsible for patching the
vulnerability faster using features like reflog or shortlog. Only 12.1% of commit messages included mentions
of the vulnerability ID, but 4 out of the 7 participants in (F) phase found including the vulnerability ID in the
‘message important.

SECOM

A convention for security commit messages

(what) describe the vulnerabili

he patch/fix

Validated with the Open-Source Security . :

Foundation (OpenSSF)

: <Low, Medium, High and Critical>

Feedback received from the security community suggests that they see
value in SECOM and would like to see it evolve into a standard practice—5
out of the 7 participants responded “Yes” to “Would you use this or a similar
convention as standard practice in your own work or advocate its use in
your team?”, the remaining two participants answered “Unsure”.

Convention has been mentioned at BlackHat and Defcon by a security
researcher that is already using it to patch thousands of vulnerabilities.

https://tgrg.github.io/secom/

SECOM
(Compliance Checklist)

Co-authored-by:

Signed-off-b

Body

Describe the vulnerability (wha), ifs im-
pact (why), and the pach to fix the
vulnerability (how) in approximately 75
words (25 words per point)

"The body is the most important part of the commit message since It provides space to add details on the problem,
impact, and solution [27]. In our empirical analysis, we observed that 59.91% commit messages have a body.
However, only 4031 out of those 6875 cases included security related words or had meaningful information.

Header

type

Did you set the type of the commit as "vuln-fix” at the of the header?

header/subject

Did you summarize the patch changes?

header/subject

Did you summarize the patch changes within ~50 chars?

Vuln-ID

T there a vulnerability ID available? Did you include it between parentheses at the end of the header?

Weakness

Common Weakness Enumeration ID or
name.

The weakness ID provides information on which type of vulnerability can exist in the software. Software patch
management teams may proceed differently according to the type of weakness. However, only 0.2% messages

included this type of

Severity

Severity of the issue (Low, Medium, High,
Critical).

Severity can ‘users to perform patch
Again, only 1.1% of commit messages mentioned severity levels.

{in case, of crifical lities) [17].

what

Did you describe the vulnerability or problem in the first sentence of the body?

why

Did you describe the impact of the vulnerability in the second sentence of the body?

how

Did you describe how the vulnerability was fixed in the third sentence?

Did you describe the what, why, and how within ~75 words (~25 words per section)?

Cvss

Numerical (0-10) representation of sever-
ity of a security vulnerability (Common

CVSS allows users to make better sense of the vulnerability severity and can motivate software users fo perform
patch management faster [17], This feld was proposed by a security engineer at OpenSSF that mentioned that

Vulnerability Scoring System).

sometimes is possible to calculate the score by following the CVSS

Detection

Detection method (Tool, Manual, ctc).

Tt can be interesting to help future rescarchers with replication. 4 out of the 7 participants in the (F) phase sces
value in adding this ficld (Table 6, RQ?).

Report

Link for vulnerability report which can
back up the lack of information provided
in commit messages. Our tool extracted

Tt usually provides morc information on the vulnerability exploit or proof-of-concept. We obscrved that 3 out of
the 7 participants would like to see links to reports, (F) phase (RQ1).

Metadata

‘Weakness

Can this vulnerability be classified with a type? If so, add it to the metadata section.

Can infer severity (Low, Medium, Figh, Critical for this vulnerability? I so, add i to the mefadata section,

Severity
CVSS

Can you caleulate the fon of the severity through the Common Vulnerability Scoring System

lator (https: i 3.0)?

Detection

How did you find this vulnerabl].lty” {e.g., Tool, Manual, etc)

Report

Ts there a link for the vulnerability report available? If so, include it.

Introduced in

Include the commit hash from the commit where the vulnerability was introduced.

Tnroduced in

Commit hash from the commit that in-
troduced the

Suggested by a survey participant of the (F) phase and used in the OSV Schema [42]. In addifion, we found SHA
keys in 1467 commits messages.

Signed-off by

Name and contact of the person that re-
ported the issue.

"To provide credit to the person that found the problem and ask for more defails when necessary. However, only
8.4% commit messages were signed-off by the respective authors.

Contacts

Reviewed by

Tnclude the name and/or contact of the person that reviewed and accepted the patch.

Signed-ofi-by

Include the name and/or contact of the person that authored the patch.

Reviewed by

Name and contact of the person that re-
viewed and closed the issue.

Reviewers are usually the internal developers or senior developers thal review and approve the issues. Only
3.33% of messages have the reviewers contact.

Bug-Tracker

External

Tnclude the link to the issues or pull requests in the external bug tracker.

GitHub

Tnclude the links for the issues and pull-requests related o the patch (Resolves. . See also:).

Qo|[&[o||co e === ==z

Bug-tracker

Link to the issue in an external bug-
tracker or Resolves... See also:
when GitHub is used to manage issues.

Tmportant to document and discuss the problem, its impact, and patch with people mvolved. In our empirical
analysis, we extracted URLs from a total of 929 commits.

Table 5: Fields description and rationale.

Table 7: SECOM Compliance Checklist. [M-Mandatory; O-Optional; *-All fields in the section.]

Sections

SECOMIint e Work in Progress pl’Odigy

(Compliance Checker) - e . Improved annotation with an annotation tool for natural Radically efficient machine teaching.

https://tqrg.github.io/secomlint e = language called Prodigy. An annotation tool powered
by active learning.

20) SIS G G 6o p— " Trained a transformed based model for named entity
recognition based on the data we extracted. Initial acc

Body has more than 75 words.
Contacts section includes tag for reported-by but email is missing. o,
Contacts section includes tag or mention for co-authored-by but email is missing. = 79 /o
Header size is within the max length (50 chars).

leader is not empty.
i B gy Future Work Prodigy can access the uncertainty of each prediction.
Body follows the what, why and how structure (three paragraphs).
Metadata mentions a weakness (CWE) id. b é
When it finds a case with high uncertainty, it presents tn 2 IIEIROANTH

e - Explore GPT-3 to produce the message and entities to the user for validation. Do Tt s the [EfErETm] s n
Hetadat mertions sha here winerabiLiy wes dntrosucd in suggeshons/recommendanons
o e S AN (AT B ey based on the code—to shorten Active Learning - Different iterations of the model

the burden of a new best with new data (imp. of 5% after 4 iterations of 100

practice. messages each)

Try itlive and highlight entities!

Apple ors des

example of Apple or 's of creating high - quality

JdUARIQYQIQYQQ0000

found 1 problem(s), 4 warning(s); e Commit message is 70.59% in compliance with [SECOM] convention.

Not a real case; just a use case provided

Future Work Text Classification + NER by the website

False Positives Prioritisation and Filtration

Outline
(Helping with triage of the alerts outputted by SASTs tools)

About me
m Nowadays, many companies use static analysis tools (SASTs) to automate

Research Overview the detection of bugs and potential security violations.

Collection of SAST Tools ® SASTs are known for their high false positive rates — general problem!
Software Vulnerability Detection + Al & Extensive lists of warnings disrupt the developers’ productivity since they are
expected to judge each warning on their own, many times with poor knowledge
. . and experience — time waster!
Best Practices For Patch Documentation xperl ime W
But, given that verification problems are undecidable, reporting false positive

Alert Prioritisation warnings is inevitable.
Infrastructure-as-code (laC) scripts

Fixing Vulnerabilities Potentially Hinders Software Maintainability

@rmaranhao

False Positives Prioritisation and Filtration False Positives Prioritisation and Filtration
(Helping with triage of the alerts provided by SASTs tools) (Helping with triage of the alerts provided by SASTs tools)

@ Infer produces a list of warnings without any specific order or priority assigned. Alert prioritisation or post & Our approach orders the list of warnings by the probability of being a False Positive.
processing may soften the impact of false positives in tool adoption.

U 50 AT WARNNGS| O, GEHT S POSTIE
L6110 A 10 0N NACH O A

5180 AU N A ST T VINGS M ORGRD B
650 10 5 e 0 7 OO B

P 675 O N THE T3 504

* NFER FOUND 199 sl * INFER FOUND 19 Ltk * * INFER FOUND 199 5sUks *

@rmaranhao @rmaranhao

False Positives Prioritisation and Filtration False Positives Prioritisation and Filtration
(Helping with triage of the alerts provided by SASTs tools) (Helping with triage of the alerts provided by SASTs tools)

We compared different deep learning architectures (LSTM, BERT, CodeBERT and GraphCodeBERT).

Collection Classification
Source code

Table 1: Alerts distribution per type of bug Table 2: Alerts classification distribution per label (13 alerts e e Lo fowetge
Project Resource Null Alerts were removed due to an Infer bug) i ot Masked Language Modeting |a

Sa, v e
Leak Deref. Project True Positive False Positive Alerts m [‘ T }(1 XT ttttrtt
apache-tomcat-9.0.50 66 230 296 apache-tomcat-9.0.50 225 69 294 LSTM renn”
avrora-0.1.52 20 28 48 avrora-0.1.52 36 12 48 BERT Comment

joda-time-2.10.6 2 10 12 joda-time-2.10.6 11 1 12 Return mosimum valae GraphCodeBERT
jython-2.7.2.2b3 62 jython-2.7.2.2b3 88 91 180 CodeBERT Data Flow
xalan-j-2.7.1 10 38 48 xalan-j-2.7.1 27 21 48 _- RN
jackrabbit-2.21.7 98 91 jackrabbit-2.21.7 89 189 GraphCodeBERT 77.23 | e it e e 8

tt LR AR B B t 2Tt
apollo-1.8.2 7 22 29 apollo-1.8.2 16 13 29 % . Return maimum value x-0ifb> o :x-belse A b06a Kb K

biojava-5.4.0 186 121 307 biojava-5.4.0 203 104 307 - T Coce LS

h2database-1.4.200 74 h2database-1.4.200 121 31 152 Figure 2: An illustration about GraphCodeBERT pre-training. The model takes source code paired
susi_server-230d679 39 97 susi_server-230d679 57 34 91 with comment and the corresponding data flow as the input, and is pre-trained using standard masked
Total Total 874 476 language modeling (Devlin et al., 2018) and two structs tasks. One struct task is to
predict where a variable is identified from (marked with orange lines) and the other is data flow edges
prediction between variables (marked with blue lines).

@rmaranhao @rmaranhao

Training Configuration (k-fold cross validation)

Evaluating machine learning algorithms requires data separation into a:
Training set, used to estimate model parameters;
Test set, used to evaluate the classifier’s performance.

We use the k-fold cross-validation technique:
- The dataset is split in k sets.
- One by one, is used for testing and the remaining k-1 other sets are used for
training. This process is repeated k times for each set.

. . Validation Fold
We performed a 5-fold cross validation | Training Fold

for both scenarios. Each execution was
performed 5 times with different random
seeds (5-fold cross validation x 5 random
seeds = 25 runs).

Why 25 runs? To check the consistency
of the results.

5 iteration:

@rmaranhao

False Positive Probability Prediction

Infer’s original output (First 10 warnings
src/org/apache/xalan/xsltc/runtime/output/WriteroutputBuffer.java:38: error: NULL DEREFERENCE
src/org/apache/xalan/extensions/XPathFunctionResolverImpl.java:61: error: NULL_DEREFERENCE
src/org/apache/xalan/xsltc/util/JavaCupRedirect.java:63: error: RESOURCE_LEAK
src/org/apache/xalan/xsltc/compiler/FormatNumberCall.java:59: error: NULL_DEREFERENCE
src/org/apache/xalan/xsltc/compiler/ApplyImports. jav: error: NULL_DEREFERENCE
src/org/apache/xml/serializer/SerializerBase.java:71: error: NULL_DEREFERENCE
src/org/apache/xalan/xsltc/compiler/ApplyImports. jav error: NULL_DEREFERENCE
src/org/apache/xalan/xsltc/compiler/ApplyImports. jav error: NULL_DEREFERENCE
src/org/apache/xalan/xsltc/compiler/Key. java: error: NULL_ DEREFERENCE
src/org/apache/xalan/xsltc/trax/TrAXFilter.java:116: error: NULL_DEREFERENCE

utput Prioritized (First 10 warnings)
src/org/apache/xalan/xsltc/util/JavaCupRedirect.java:63: error: RESOURCE LEAK
Probability of being a False Positive: ©.06495786
src/org/apache/xalan/xslt/EnvironmentCheck.java:134: error: RESOURCE LEAK
Probability of being a False Positive: ©.09818842
src/org/apache/xalan/xsltc/trax/TransformerFactoryImpl.java:1305: error: RESOURCE_LEAK
Probability of being a False Positive: ©.10622824
src/org/apache/xalan/xsltc/trax/TransformerFactoryImpl.java:1312: error: RESOURCE_LEAK
Probability of being a False Positive: 0.10622824
src/org/apache/xalan/xsltc/trax/TransformerFactoryImpl.java:1209: error: RESOURCE_LEAK
Probability of being a False Positive: ©.11100773
src/org/apache/xalan/xsltc/trax/TransformerFactoryImpl.java:1164: error: RESOURCE_LEAK
Probability of being a False Positive: 6.11108773
src/org/apache/xalan/xsltc/runtime/AbstractTranslet.java:561: error: RESOURCE_LEAK
Probability of being a False Positive: 0.16833092
src/org/apache/xalan/xsltc/compiler/Key.java:90: error: NULL_DEREFERENCE
Probability of being a False Positive: 0.2923071
src/org/apache/xalan/xsltc/dom/DOMAdapter.java:184: error: NULL DEREFERENCE
Probability of being a False Positive: 0.2968096
src/org/apache/xalan/xsltc/dom/DOMAdapter.java:249: error: NULL_DEREFERENCE
Probability of being a False Positive: ©.3001589

False Positives Prioritisation and Filtration
(Helping with triage of the alerts provided by SASTs tools)

We use a softmax layer to calculates the likelihood of a sample being a true positive or false positive [x, y]

where x is the likelihood of being a true positive and y the likelihood of being a false positive — we use)

organize the list of warnings.

2 NORMALIZE

\
m $ ['INT, "VART", E ‘N1

P TP PRopAmTy

P FP pRopasuTy 7

False Positive Probability Prediction

Infer’s original output (First 10 warnings

to

SoTMAX
—(P TP PRopasuTy
—— P pRopasuy
O<p<1

ARGMAX = CLASSHICATION

14

src/org/apache/xalan/xsltc/runtime/output/WriteroutputBuffer.java:38: error: NULL DEREFERENCE

src/org/apache/xalan/extensions/XPathFunctionResolverImpl.java:61: error: NULL DEREFERENCE
src/org/apache/xalan/xsltc/util/JavaCupRedirect.java:63: error: RESOURCE LEAK
src/org/apache/xalan/xsltc/compiler/FornathunberCall. java:59: error: NULL DEREFERENCE
src/org/apache/xalan/xsltc/compiler/ApplyImports. java:65: error: NULL DEREFERENCE
src/org/apache/xnl/serializer/SerializerBase.java:71: error: NULL_DEREFERENCE
src/org/apache/xalan/xsltc/compiler/ApplyImports. java:79: error: NULL DEREFERENCE
src/org/apache/xalan/xsltc/compiler/ApplyImports. java:83: error: NULL DEREFERENCE
src/org/apache/xalan/xsltc/compiler/Key.java:90: error: NULL DEREFERENCE
src/org/apache/xalan/xs\tc/trax/TrAXFilter.java:116: error: NULL _DEREFERENCE

Output Prioritized (First 10 warnings)

src/org/apache/xalan/xsltc/util/JavaCupRedirect java;

Probability of being a False Positived 6.06495786
src/org/apache/xalan/xslt/Environmentdheck. java:134:
Probability of being a False Positived 0.09818842

src/org/apache/xalan/xsltc/trax/TransflormerFactoryImpf .jav

Probability of being a False Positived 0.10622824
src/org/apache/xalan/xsltc/trax/TransflormerFactoryImp|
Probability of being a False Positived 6.10622824
src/org/apache/xalan/xsltc/trax/TransflormerFactoryImp|
Probability of being a False Positived 6.11100773
src/org/apache/xalan/xsltc/trax/TransflormerFactoryImp|
Probability of being a False Positived 6.11100773
src/org/apache/xalan/xsltc/runtime/AbdtractTranslet. j|
Probability of being a False Positived 0.16833892
src/org/apache/xalan/xsltc/compiler/Kdy.java:9e: erro
Probability of being a False Positived 6.2923071
src/org/apache/xalan/xsltc/dom/DOMAdagter . java:184: ¢}
Probability of being a False Positived 0.2968096
src/org/apache/xalan/xsltc/dom/DOMAdagter . java:249: ¢}
Probability of being a False Positived 0.3001589

List is in ascending
2 order of being a false
.jaw positive, i.e., true
positives appear in the

7™ top of the list.

va: s
N
Fror:SnoCC Uit enter

fror: NULL DEREFERENCE

False Positive Probability Prediction

Infer’s original output (First 10 warning

src/org/apache/xalan/xsltc/runtine/output/WriteroutputBuffer.java:38: error:

NULL_DEREFERENCE

src/org/apache/xalan/extensions/XPathFunctionResolverInpl. jav; error: NULL DEREFERENCE
src/org/apache/xalan/xsltc/util/JavaCupRedirect. java:63: error: RESOURCE LEAK
src/org/apache/xalan/xsltc/compiler/FormatNumberCall. java:59: error: NULL DEREFERENCE
src/org/apache/xalan/xsltc/compiler/ApplyImports.java:65: error: NULL DEREFERENCE
src/org/apache/xnl/serializer/SerializerBase.java error: NULL DEREFERENCE

src/org/apache/xalan/xsltc/compiler/ApplyInports. java err

: NULL_DEREFERENCE

src/org/apache/xalan/xsltc/compiler/ApplyInports. java error: NULL DEREFERENCE

src/org/apache/xalan/xsltc/compiler/Key.java:90: error: NULL_DEREFERENCE
src/org/apache/xalan/xsltc/trax/TrAXFilter.java:116: error: NULL DEREFERENCE

Output Prlormzed (First 10 warnings)

src/org/apache/xalan/xsltc/util/JavaC

Redirect.java:

Probability of being a False Positive

i/xalan/xslt/Environmentdheck. java:134:

being a False Positive:|

BopereryTrans]

being a False Positive:|

/xalan/xsltc/trax/Transf]

If we wanted to make FP being a False Positive
/xalan/xsltc/trax/Transff

filtration, could we simply remove veing a ralse Positive
false positives from the list? Not /xalﬂ"/xsll(/"a”"a"sf
ing a False Positive;

qu"e because Of /xalan/xslt(/runtlme/l\b
misclassifications. being a False Positive;
/xalan/xsltc/compiler/Ke
being a False Positive:|
/xalan/xsltc/dom/DOMAdap}
being a False Positive:|
. //xalan/xsltc/dom/DOMAdap)
Probability of being a False Positive:]

0.06495786

0.09818842
rmerFactoryImp| .jay .)
0.10622824 List is in ascending
rmerFactoryImp).jay :

o 10699894 order gf be!ng a false
rmerfFactoryImp| .jav positive, i.e., true
0.11100773 positives appear in the
top of the list.

rmerFactoryImp|.jay
0.11100773
ractTranslet. j
0.16833092
.java:90: errof:
0.2923071
ter_java:184: ¢
0.2968096

ter . java:249: ¢
0.3001589

: NULL_DEREFERENCE

Can we use uncertainty to remove false
positives?

Uncertainty (MonteCarlo Dropout) —
1 means False Positive; 0 means True Positive; Pred means prediction

Uncertainy Gistribution or the real fion for the false

iy distrbuton or alarms predicted as false alams

(Label: 0, Prec: 1)

. o 06
Nare: predictive_u Name: predictive_unc_out, dtype: float6s

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?

1189.0 1.0 1.0 (0.9808582663536072 , 0.0167069364060149)
.9598968625068665 , 0.0200239749043437)
.972375988960266 , ©.0251415324887267)

.9828186631202698 , 0.0266482426567068)
.9800212979316713 , 0.0271233179453896)
.9784590005874634 , 0.0272263334816144)
.9633317589759828 , 0.0280264249865703)
.974230170249939 , 0.0301422853449366)

.9778905510902404 , 0.030943173810184)

.9571858048439026 , 0.0322401585060153)
.9547353982925416 , 0.0367057303005549)
1.0 (0.974616289138794 , 0.0398652718347465)
1.0 (0.9473590850830078 , ©.0433458915435773)
579. 0 il 0 1.0 (0.968421757221222 , .0476049305169327)

.0 (0.9297662973403932 , 0.0489453594022135)
(0.9841968417167664 , 0.0510306827585265)
ceo
.0 (

Soocossseses:
AAAAA~AAAAAA
sososssssesS

an
1.
1.
1.
1.
an
1.
1.
-
iy

99.0 .967397689819336 , 0.0535892701838277)
1187. 0.9521318078041076 , 0.0636437384511407)
528.0 1.0 1.0 (0.9391631484031676 , 0.066620227034892)
0.9164852499961852 , 0.0705890700726293)
0.9609205722808838 , 0.0802505084974802)
.812978982925415 , 0.081460339762227)
953866720199585 , 0.0844247870401106)
0.7676697373390198 , 0.0990576612115126)
.9529691338539124 , 0.0993099416542683)
0. 8964836597442627 0.1094783417498151)
923535704612732 , B 1126134460854173)
8990851044654846 , 0.1189801196792885)
9325357675552368 , ©.1193484347387036)
9021071791648864 , 0.1356616176612773)
8537898063659668 , 0.1390569551607128)
8205998539924622 , 0.1506043838108364)
8858692646026611 , 0.1548434509196032)
7768675684928894 , 0.1657737582232674)
89. B 1. B 1. 0 (0.873923659324646 , 0.1729220861542172)
1.0 Co. 3919172883833752 , 0.1785520589750137)
1.0 (0.7880885601043701 , 0.1961830362571335)
1.0 (0.7272935509681702 , 0.1965394816717129)

PRRRRRRR
ssssssss:
AAA~AA~AA~AA~AAA
eoosoess,

Can we use uncertainty to remove false positives?

Uncertainty refers to the lack of confidence for each output of a machine learning algorithm.

How do we calculate it so far?
Using a MonteCarlo dropout approach.

- Analyze the different outputs generated by the T forward passes.
- The higher the value, the more uncertain the model is.

Uncertainty (MonteCarlo Dropout) — T=5
1 means False Positive; 0 means True Positive; Pred means prediction
Uncertainty distribution for the real

alarms predicted as false alarms
(Label: 0, Pred: 1)

Uncertainty distribution for the false
alarms detected correctly
(Label: 1, Pred: 1)

. 000000
121971
095684 0.082733
.016707 i 0.095695
.041606 0.284798
099058
175737
.366078

: predictive_unc_out, dtype: : predictive_unc_out, dtype: float64

Can we use uncertainty to remove false
positives?

Uncertainty (MonteCarlo Dropout) — T=5
1 means False Positive; 0 means True Positive; Pred means prediction.

out, dtype: floatss

The next question is “how to usf e positive

filtration issue”?

This list is ordered by the
descending order of being a
False Positive.
idx_alert, Label, Pred, (P_fp,
Unc)

Uncertainty distribution for the false
alarms predicted as real alarms
(Label: 1, Pred: 0)

000000
.25479
.105699
.077910
.160091
.297044
.352268
.367724
: predictive_unc_out, dtype: float64

1189.0 1.0 1.0 (0.9808582663536072 , 0.0167069364060149)
660.0 .9598968625068665 , 0.0200239749043437)
559.0 .972375988960266 , 0.0251415324887267)
577.0 .9828186631202698 , 0.0266482426567068)
500.0 .9800212979316713 , 0.0271233179453896)
770.0 .9784590005874634 , 0.0272263334816144)
236.0 .9633317589759828 , 0.0280264249865703)
597.0 .974230170249939 , 0.0301422853449366)
238.0 .9778905510902404 , 0.030943173810184)
573.0 .9571858048439026 , 0.0322401585060153)
742.0 .9547353982925416 , 0.0367057303005549)
1054.0 1. .0 (0.974616289138794 , 0.0398652718347465)
1331.0 1,0 1.0 (0.9473590850830078 , ©.0433458915435773)
579.0 1.0 1.0 (0.968421757221222 , 0.0476@49305169327)
1157.0 1. 0.9297662973403932 , 0.0489453594022135)
94.0 1.0 .9841968417167664 , 0.0510306827585265)
.0
1.

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
10

SeooeceeSS S

1.
1.
1.
s
1.
%
1.
1.
I
1

S AAAA~AA~AA~AA~AAAA

99.0 .967397689819336 , 0.0535892701838277)

1187. 0.9521318078041076 , 0.0636437384511407)
528.0 1.0 1. 0 (0.9391631484031676 , 0.066620227034892)

1.0 (0.9164852499961852 , 0.0705890700726293)

1.0 (0.9609205722808838 , 0.0802505084974802)
0.812978982925415 , 0.081460339762227)
0.953866720199585 , ©.0844247870401106)

0.7676697373390198 , 0.0990576612115126)
.9529691338539124 , 0.0993099416542683)

0.8964836597442627 , 0.1094783417498151)
0 (0.923535704612732 , 0.1126134460854173)

@ (0.8990851044654846 , 0.1189801196792885)

0 (0.9325357675552368 , 0.1193484347387036)

0 (0.9021071791648864 , 0.1356616176612773)

.0 (0.8537898063659668 , ©.1390569551607128)

0 (0.8205998539924622 , 0.1506043838108364)

0 (0.8858692646026611 , 0.1548434509196032)

.0 (0.7768675684928894 , 0.1657737582232674)
89. 0 1. 0 1.0 (0.873923659324646 , 0.1729220861542172)

1.0 (0.8919172883033752 , 0.1785520589750137)

1.0 (0.7880885601043701 , 0.1961830362571335)

1.0 (0.7272935509681702 , 0.1965394816717129)

Can we use uncertainty to remove false
positives and reduce de list of alerts?

Uncertainty (MonteCarlo Dropout) — T=5

s i, i] e e, (i (e e Tpre¢ etV Tmeiout ek yps Hriootsd

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?
idx_alert, Label, Pred, (P_fp, Unc)

Can we use uncertainty to remove false
positives and reduce de list of alerts?

Uncertainty (MonteCarlo Dropout) — T=5

max 0.367706 rax
Nane: predictive_unc_out, dype: Floates JlName: predictive_unc_out, déype: Floatés Nare: predictive_unc_out, dtype: floatss

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?
idx_alert, Label, Pred, (P_fp, Unc)

One way is to simply output the prediction, prob_fp and uncertainty together with the alert
information and leave to the user to make a decision (but now with more information).

The other is to use descriptive statistics to find a threshold. For instance, the min values for
misclassifications are 0.095695 and 0.077910. Therefore, if we pick a threshold of 0.075

(which is smaller than both min values), we can achieve a reduction of 20 out of 71 FPs — a

reduction of 28% of false alarms in the actual list of alerts provided by Infer.

Work in Progress Exploring Confidence Intervals Theory for Deep Learning to find the
misclassified correctly

1189.0 1.0
i
1
1
1
:
1
1
1
1
1

579.0 1.0 1.

1187.
5280101

890101

1189.0 1.0
60 .

an
1.
1.
1.
1.
an
1.
1.
-
iy

0101

.01.0
579.0 1.0 1.
99.0

1187.
528.0 1. 0 s

563.
688.

ssosssssses:
PRRRR R R R
ssssssss

632.
890101
567.

1.0 (0.9808582663536072 , 0.0167069364060149)
9598968625068665 , 0.0200239749043437)
972375988960266 , 0.0251415324887267)
9828186631202698 , 0.0266482426567068)
9800212979316713 , 0.0271233179453896)
9784590005874634 , 0.0272263334816144)
9633317589759828 , 0.0280264249865703)
974230170249939 , 0.0301422853449366)
9778905510902404 , 0.030943173810184)
9571858048439026 , 0.0322401585060153)
9547353982925416 , 0.0367057303005549)
0 (0.974616289138794 , 0.0398652718347465)
1.0 (0.9473590850830078 , ©.0433458915435773)
0 (0.968421757221222 , ©.0476049305169327)
0.9297662973403932 , 0.0489453594022135)
.9841968417167664 , 0.0510306827585265)
.967397689819336 , 0.0535892701838277)
0. 9521318078041576 , 0.0636437384511407)
0 (0.9391631484031676 , 0.066620227034892)
(0.9164852499961852 , 0.0705890700726293)
(0.9609205722808838 , 0.0802505084974802)
0.812978982925415 , 0.081460339762227)
0.953866720199585 , ©.0844247870401106)
0. 7676697373390193 , 0.0990576612115126)
.9529691338539124 , 0.0993099416542683)
0. 8964836597442627 , 0.1094783417498151)
.923535704612732 , 0.1126134460854173)
.8990851044654846 , 0.1189801196792885)
.9325357675552368 , 0.1193484347387036)
.9021071791648864 , 0.1356616176612773)
.8537898063659668 , @.1390569551607128)
[
[

SocoooeseS S

Sosossssss
AAAAAA~AAAAA

~ASn

.8205998539924622 , 0.1506043838108364)
.8858692646026611 , 0.1548434509196032)
.7768675684928894 , 0.1657737582232674)
U (0.873923659324646 , 0.1729220861542172)
ce. 3919172833%33752 , 0.1785520589750137)
(0.7880885601043701 , 0.1961830362571335)
(0.7272935509681702 , 0.1965394816717129)

sessssssS

(
C
C
C
C
C
C
C

1.0 (0.9808582663536072 , 0.0167069364060149)
.9598968625068665 , 0.0200239749043437)
.972375988960266 , ©.0251415324887267)
.9828186631202698 , 0.0266482426567068)
.9800212979316713 , 0.0271233179453896)
.9784590005874634 , 0.0272263334816144)
.9633317589759828 , 0.0280264249865703)
.974230170249939 , 0.0301422853449366)
.9778905510902404 , 0.030943173810184)
.9571858048439026 , 0.0322401585060153)
.9547353982925416 , 0.0367057303005549)
0 (0.974616289138794 , 0.0398652718347465)
1.0 (0.9473590850830078 , ©.0433458915435773)
0 (0.968421757221222 , ©.0476049305169327)
(0.9297662973403932 , 0.0489453594022135)
0.9841968417167664 , 0.0510306827585265)
0
C

Soocossseses:
S AAAA~AAA~AA~AAAA
sososssssesS

.967397689819336 , 0.0535892701838277)
0.9521318078041076 , 0.0636437384511407)
@ (0.9391631484031676 , 0.066620227034892)
1.0 (0.9164852499961852 , 0.0705890700726293)
1.0 (0.9609205722808838 , 0.0802505084974802)
.0 (0.812978982925415 , 0.081460339762227)
1.0 (0.953866720199585 , 0.0844247870401106)
0.7676697373390198 , 0.0990576612115126)
.9529691338539124 , 0.0993099416542683)
0. 8964836597442627 0.1094783417498151)
923535704612732 , B 1126134460854173)
8990851044654846 , 0.1189801196792885)
9325357675552368 , ©.1193484347387036)
9021071791648864 , 0.1356616176612773)
8537898063659668 , 0.1390569551607128)

]

[

.0
(
¢
.0

~ASn

8205998539924622 , 0.1506043838108364)
8858692646026611 , 0.1548434509196032)
7768675684928894 , 0.1657737582232674)
0 (0.873923659324646 , 0.1729220861542172)

3919172883833752 , 0.1785520589750137)

AAAAAAAA
seoosesss

1.0 C 0.
1.0 (0.7880885601043701 , 0.1961830362571335)
1.0 C 0.

7272935509681702 , 0.1965394816717129)

Can we use uncertainty to remove false
positives and reduce de list of alerts?

Uncertainty (MonteCarlo Dropout) — T=5

Name: predictive_unc_out, deype: floates JllName: predictive_unc_out, dtype: Floates Name: predictive_unc_out, dype: floatéd

The next question is “how to use these uncertainty values to fix the false positive
filtration issue”?
idx_alert, Label, Pred, (P_fp, Unc)

One way is to simply output the prediction, prob_fp and uncertainty together with the alert
information and leave to the user to make a decision (but now with more information).

Outline

About me

Research Overview

Collection of SAST Tools

Software Vulnerability Detection + Al
Best Practices For Patch Documentation
Alert Prioritisation

Infrastructure-as-code (IaC) scripts

1189.0 1.0 1.0 (0.9808582663536072 , 0.0167069364060149)
01. .9598968625068665 , 0.0200239749043437)
01. .972375988960266 , 0.0251415324887267)
01. .9828186631202698 , 0.0266482426567068)
01 .9800212979316713 , 0.0271233179453896)
.01 .9784590005874634 , 0.0272263334816144)
01. .9633317589759828 , 0.0280264249865703)
01. .974230170249939 , 0.0301422853449366)
01. .9778905510902404 , 0.030943173810184)
01. .9571858048439026 , 0.0322401585060153)
o T .9547353982925416 , 0.0367057303005549)
© 1.0 (0.974616289138794 , 0.0398652718347465)
.0 1.0 1.0 (0.9473590850830078 , 0.0433458915435773)
579.0 1. o 1.0 0.968421757221222 , 0.9476049305169327)
1157, 0.9297662973403932 , 0.0489453594022135)
94.0 .9841968417167664 , 0.0510306827585265)
.967397689819336 , 0.0535892701838277)
1187. 0.9521318078041076 , 0.0636437384511407)
528.0 1.0 1.0 (0.9391631484031676 , 0.066620227034892)
.0 1.0 1.0 (0.9164852499961852 , 0.0705890700726293)
© 1.0 (0.9609205722808838 , 0.0802505084974802)
e (0.812978982925415 , 0.081460339762227)
0.953866720199585 , 0.0844247870401106)
0.7676697373390198 , 0.0990576612115126)
.9529691338539124 , 0.0993099416542683)
0.8964836597442627 , 0.1094783417498151)
0 (0.923535704612732 , 0.1126134460854173)
© (0.8990851044654846 , 0.1189801196792885)
 (0.9325357675552368 , 0.1193484347387036)
0 (0.9021071791648864 , 0.1356616176612773)
.0 (0.8537898063659668 , 0.1390569551607128)
0(o.
0Co
.0 Co.

1.
01.

688. 8205998539924622 , 0.1506043838108364)
310. 46026611 , 0.154843 196032)
632. 7768675684928894 , 0.1657737582232674)
89.0 1. 0 1.0 (0.873923659324646 , 0.1729220861542172)

567.0 1.0 1.0 (0.8919172883033752 , 0.1785520589750137)
.0 1.0 1.0 (0.7880885601043701 , 0.1961830362571335)
.0 1.0 1.0 (0.7272935509681702 , 0.1965394816717129)

Fixing Vulnerabilities Potentially Hinders Software Maintainability

Infrastructure-as-code (laC) scripts in Puppet Manifests Assessment > 12 types of weaknesses

(New technology based on scripts that are prone to security vulnerabilities [1])

Weakness ‘ Name ‘ Example

CWE-798 Use of Hard Coded Credentials $username = “mariadb”
CWE-269 Use of Hard Coded Password $password = “ITQ23Rg”
CWE-321 Use of Hard Coded Cryptographic Key $key = “A67ANBD7”

-3 These tools help infrastructure teams increase productivity by automating various CWE-319 Use of HTTP without TLS $req = “http://www.domain.org/secret”
config tasks (e.g., server setup) through scripts that can be reused and versioned.) -

p Software configuration management and deployment tools like Puppet became
[Z popular amongst software development warehouses.

CWE-546 Suspicious Comment #https://bugs.debian.org/cgi-bin/bugr:
. . . N CWE-326 Use of Weak Crypto Algorithms assword => md5($debian_password
As with any piece of code, laC scripts are also prone to defects such as security Sy L ¢ G)

vulnerabilities. CWE-284 Invalid IP address Binding $bind_host = “0.0.0.0”

67k potential

Security Smells in laC CWE-250 Admin by default $user = “admin”

Oh gosh! laC templates

’ 199K vulnerable

’ CWE-258 Empty Password in Configuration File $rabbitmq_pwd = "

CWE-521 Weak Password pwd => “12345”

@ Rahman et al. [ICSE’19; TSE’20] CWE-1007 Homoglyphs Detection (typo-squatting attacks) $source = "http://deb.debian.org/debian"
CWE-829 Malicious Dependencies $postgresql_version = 8.4

[1] Akond Rahman, Chris Parnin, Laurie Williams. The Seven Sins: Security Smells
in Infrastructure as Code Scripts. ICSE’19

@rmaranhao @rmaranhao

Research Team

Motivation > Automated Security Weakness Detection in Puppet Study 1 > Validation with Students

Focus on Puppet 1419 GitHub repositories (~34k Puppet Scripts).

Found 31990 security warnings on 9144 of Puppet scripts.
Lightweight Solution Available (called SLIC) [Rahman et al., ICSE’19]
99% of precision and accuracy in an oracle dataset Table 2: Breakdown of warnings reported by SLIC.

Rule #

SLIC detects 7 types of weaknesses.
Hard-coded secrets 22365

Use of HTTP without TLS 3757
Suspicious comments 2780
A Use of Weak Crypto. Al 1489
- D) Y

1st question: How does SLIC perform on a new dataset? Invalid P Address Binding 760
Empty Password 684
Admin by default 146

Total 31990

@rmaranhao @rmaranhao

http://www.domain.org/secret
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=538392
http://deb.debian.org/debi%F0%9D%91%8En

Research Team Research Team

Study 1 > Validation with Students Study 1 > Validation with Students

2 authors validated a total of 502 warnings. 2 authors validated a total of 502 warnings.

Two samples: proportional and uniform. Two samples: proportional and uniform.

Table 3: Performance of SLIC. (Validation with Students) Table 3: Performance of SLIC. (Validation with Students)

SLIC proportional uniform SLIC proportional uniform

Precision decreased Precision decreased
Rule #TP #FP Pr. #TP #FP Pr Rule #TP #FP Pr. Pr.

from 99% to 64%. from 99% to 64%.
Hard-coded secrets 52 0.70 26 10 Hard-coded secrets 122 52

Use of HTTP without TLS 20 0.31 10 26 Use of HT TP without TLS 20
Suspicious comments 12 0.45 8 28 Suspicious comments 12
Use of Weak Crypto. Algorithms 4 064 25 11 Use of Weak Crypto. Algorithms Maybe we don’t have
Invalid IP Address Binding 0 1.00 28 8 Invalid IP Address Binding
2
1

21
Empty Password 0.67 21 15 Empty Password enough context?!

Admin by default 0.50 21 15 Admin by default

Total 91 0.64 . Total

@rmaranhao @rmaranhao

Maintainers Maintainers

Study 2 > Validation with OSS Maintainers Study 2 > Validation with OSS Maintainers

Got 51 answers to the 228 issues submitted; but only 33 were AVa AW

Issued alerts to projects maintainers involved in the slack i A
puppet community. clearly validated. “N/A”-“thumbs_down:" @
i b A

@ Issues included the code sample, issues description and w ¥ “These todos’s shouldn't be there, | agree...
links to more information.

commented 6 days ago

The following script seems to have a hard-coded secret cron_user=root?

Location
puppet-apt_mirror/manifests/init.pp
Line 191 in 2d@e6bb

Description
Assessment
Actionability

$cron_user = 'root',
A secret can be a password, user name, or private cryptographic key.

This type of smell can lead to well-known types of vulnerabilities, as documented by CWE (CWE-798 and CWE-259). Hard-
coded secrets can be used to bypass protection mechanisms, gain privileges on applications and access to sensitive data.

Storing secrets in Puppet configuration files is considered to be a security smell (cf. [icse20])

Recommendation

To your secrets, itis r to use a vault (e.g., https://www.aultproject.io]). After configuring the
vault, you can replace your secrets by variables from the vault. For instance, replace spassword = 12345" by $password =
$vault::passvord . Thus, your secrets will no longer be disclosed publicly.

@rmaranhao @rmaranhao

Maintainers

Study 2 > Validation with OSS Maintainers - B
g Not great!

. : -3 1st question: How does SLIC perform on a new dataset?
Got 51 answers to the 228 issues submitted; but only 33 were o AW

clearly validated. “N/A”“thumbs_down”
R ¢

(Y]

¥ “These todos’s shouldn’t be there, | agree...” ¢

Table 4: Performance of SLIC. (Validation with Owners)

Rule #FP Precision

: S
Hard-coded secrets 119 0.39 R FrEE e B et

Use of HTTP without TLS 0.01 VI

Suspicious comments 0.17

Use of Weak Crypto. Algos. 0.00 Precision decreased to @
Invalid IP Address Binding 0.00 28%,

Empty Password 0.17

Admin by default 1.00

Total 0.28

@rmaranhao @rmaranhao

1st question: How does SLIC perform on a new dataset? g Not great! 1st question: How does SLIC perform on a new dataset? Q Not great!

Problem > Puppet IaC Security Linters are not reliable yet! Problem > Puppet laC Security Linters are not reliable yet!

@ Precision is even lower when evaluated by maintainers—developers with more @ Precision is even lower when evaluated by maintainers—developers with more
knowledge and context of the applications. knowledge and context of the applications.

During study 1 and study 2, we were able to list several problems in the tool
weakness- and analysis-related.

&

if has_key($userdata, ‘env’) SLIC found a hard coded secret in this logical condition ﬁ

@rmaranhao @rmaranhao

1st question: How does SLIC perform on a new dataset? g Not great!

Problem > Puppet IaC Security Linters are not reliable yet!

@ Precision is even lower when evaluated by maintainers—developers with more
knowledge and context of the applications.

During study 1 and study 2, we were able to list several problems in the tool
weakness- and analysis-related.

if has_key($userdata, ‘env’) SLIC found a hard coded secret in this logical condition ﬁ’

& Static analysis tools can be iteratively improved and extended by incorporating

Sl feedback from the developer community [Sadowski, ACM Commun.’18]

@rmaranhao

InfraSecure v0.1.0 > Design Choices

Variable/Attribute Assignments (VASS) Reduce the number of incorrect predictions
isVarAssign(token) A isAtrAssign(token)

(if has_key($userdata, ‘env’) J SLIC found a hard coded secret in this logical condition

@rmaranhao

Methodology > Improve the linter with Practitioners’ Feedback

SLIC
Rahman et al.

Phase 1

Students Owners of OSS Projects
Meeting w/ Puppet Labs + Vox Pupuli

Phase 2

Infr: re v1.0.
(s InfraSecurevi.00

Puppet Community Prolific

InfraSecure v0.1.0

InfraSecure v1.1.0

@rmaranhao

InfraSecure v0.1.0 > Design Choices

Variable/Attribute Assignments (VASS) Reduce the number of incorrect predictions
isVarAssign(token) A isAtrAssign(token)

(if has_key($userdata, ‘env’)) SLIC found a hard coded secret in this logical condition

Reasoning about the token value (TOKVAL) Some of the rules did not reason about token.value

[aws_admin_username = downcase($::operatingsystem) J No secret is stored

@rmaranhao

InfraSecure v0.1.0 > Design Choices InfraSecure v0.1.0 > Rule Improvements

Variable/Attribute Assignments (VASS) Reduce the number of incorrect predictions Usage of Weak Crypto Algorithms Search for in calls to functions
isVarAssign(token) A isAtrAssign(token) isFunctionCall()

(if has_key($userdata, ‘env’) J SLIC found a hard coded secret in this logical condition (md5checksum = '07bd73571b7028b73fc8ed19bc85226d’) Not a call to the md5() function

Reasoning about the token value (TOKVAL) Some of the rules did not reason about token.value Invalid IP address binding IPs follow dot-decimal notation
isInvalidiPBind(token.value)

[aws_admin_username = downcase($::operatingsystem)] No secret is stored

(description =>'Open up postgresql for access to sensu from 0.0.0.0/O’J Description != IP

Credentials that are not consider secrets by the community isUserDefault(token.value)

[Maintainer] “The names of these UNIX accounts are not considered to be secret. They are published openly as part of the PE Check our paper for more! Section 4.3
documentation: https://puppet.com/docs/pe/ 2019.8/what_gets_installed_and_where.html#user_and_group_accounts_installed” pap ' y

@rmaranhao @rmaranhao

InfraSecure v0.1.0 > Design Choices Methodology > Improve the linter with Practitioners’ Feedback

SLIC

Table 6: Performance of INFRASECURE v0.1.0. Rahman et al.

INFRASECURE v0.1.0 proportional uniform] j

Rule #TP Pr. #TP #FP Pr

Hard-coded secrets 118 0.84 0.86 Precision increased! 0wners of 0SS Projects

Use of HTTP without TLS 3 0.32 23 0.28
Suspicious comments 2 071 0.38
Use qt Weak Cryptoi Algorlthms 2 071 0.92 e R
Invalid IP Address Binding 1.00 ¢ 0.97 Let’s ask

Empty Password 0.67 0.58 practitioners! InfraSecure v1.0.0
Admin by default 0.50 0.57

0.76 13 0.65 Puppet Community Prolific InfraSecure v1.1.0

InfraSecure v0.1.0

Can we improve Meeting w/ Puppet Labs + Vox Pupuli

Phase 2

@rmaranhao @rmaranhao

Practitioners

Study 3 > Validation with Practitioners
Validate InfraSecure v0.1.0 alerts

Experiment shared with the Puppet communities on Slack
(puppet.community.slack.com) and Reddit (r/puppet).
14 participants

Prolific Validation of A
117 participants 339 warnings

Pre-screening: Specific Industries (e.g., Computer and Electronics), experience with configuration
management tools, security and infrastructure as a service; and, a quizz of three programming
questions about different puppet configurations. (check the replication package)

@rmaranhao

InfraSecure v1.1.0 > New Patterns (Extension)

Weak Password isStrongPwd() Uses PHP algorithm developed by Thomas Hruska.

Homograph Attacks hasCyrillic() Social engineering attack that purposely uses
supply chain attack misspelt domains for malicious purposes.

Malicious Dependencies isResource() Our database integrates malicious versions of

supply chain attack isMalicious() software for 33 different packages used by the
Puppet community (e.g., rabbitmgq, apt, cassandra,
postgresq|, etc).

CWE-521 Weak Password pwd => “12345”
CWE-1007 Homoglyphs Detection (typo-squatting attacks) $source = "http://deb.debian.org/debian"

CWE-829 Malicious Dependencies $postgresqgl_version = 8.4

@rmaranhao

InfraSecure v1.0.0 > More feedback and improvements

Use of HTTP without TLS is fine sometimes Customizable rule (whitelist with credible sources)
inWhitelist(token.value)

[Apturl => ttp://deb.debian.org/debian] SLIC reports every single occurence of http:// as unsafe.

[Practitioner] “/ think it is fine if localhost is used. Otherwise TLS should be mandatory. All
the big financial organizations will not use this check because they cannot create internal
certs or use letsencrypt.”

[Practitioner] “By default, it’s unsafe to not use HTTPS. But for internal testing/development
it is acceptable to me to not use HTTPS all the time.”

@rmaranhao

Practitioners

Study 3 > Validation with Practitioners

Table 8: Performance of INFRASECURE (v1.1.0). (Validation
with Practitioners)

Rule P #Unsure Pre Precision increased
Hard-coded secrets ; s 3 between iterations
Use of HTTP without TLS 32 3 2 .9 (28% -> 76% - 79%

Susj 1s Comments
Use of Weak Crypto. Algo. 3 .92 -> 83%)
Invalid IP Address Binding 8
Empty Password 3 3
Admin by default 6 83 More Anti-Patterns
Mali s Do dencies 2 6 k .8 .. .
aieious Dependencies Malicious dependencies, Homograph

Attacks and Weak Passwords

Weak Password 3 2

Total

Table 9: Precision obtained in different cycles of feedback More Customisation
collection for INFRASECURE. o
Whitelist

Participants version Precision

-ch Team, Owners of OSS Projects, Pup- v0.1.0 76%
<pupuli
Practitioners (cycle 1) v1.0.0
Practitioners (cycle 2) v1.1.0
@rmaranhao

http://puppet.community.slack.com
http://deb.debian.org/debian
http://deb.debian.org/debi%F0%9D%91%8En

Table 7: INFRASECURE rules to detect security smells.

CWE Weakness Name Rule . .
CWE-321 Hard-coded Key (isVarAssign(r) v isAtrAssign(t)) A isKey(t.prev_code_token) A isNonSecret(t.prev_code_token) A lisPlace- M ain CO nc | usions
@ R u I es holder(t.next_code_token)

CWE-259 Hard-coded Password (isVarAssign(t) V' isAtrAssign(1)) A isPassword(t.prev_code_token) A isNonSecret(t.prev_code_token) A lisPlace-
holder(t.next_code_token) A tisUserDefault(t.next_code_token) A tinvalidSecret(t.next code_token)

CWE-798 Hard-coded Usernames s ign(t) v ssign(t)) A isUser(t.prev_code_token) A isNonSecret(t.prev_code_token) A lisPlace-
holder(.next_code_token) A lisUserDefault(t.next_code_token) A !invalidSecret(t.next_code_token)

Table 5: INFRASECURE’s list of string and AST patterns. (isVarAssign(r) Vv isAtrAssign(t)) A (isKey(t.prev_code_token) v isPassword(t.prev_code_token) V is-
. S ariern User(t.prev_code_token)) A lisPlaccholder(t.next_code_token) A tisUserDefault(t.next_code_token) A tinvalidSe- (1) It is feasible to tune security linters to produce acceptable precision.

cret(t.next_code_token)

isAdmin(t.value) rootjadmin

lout TLS (isVarAssign(t) V isAtrAssign(1)) A isHTTP(t.next_code_token) A linWhitelist(t.next_code_token)

t.value)

schemellengthlguid ents isComment(t) A isSuspiciousWord(t)

isPassword(t.value) pass(word _[$)lpwd to. Algo. (isVarAssign(t.prev_code_token) \ isAtrAssign(t.prev_code_token) V' isFunctionCall(t.next_code_token)) A lis- o) (2) Involving practitioners in discussions is an effective way to guide the
isUser(t.value) userfusr CheckSum(t.prev_code_token) A isWeakCrypto(t.next_code_token) improvement Of those linters.

oKy (tvalue) (vtpriv) - (certkey rsafseerefsl) Binding (sVarAssign(t) V isAlrAssign(0) A is d(tnext_code_toker)

isPlaccholder(.value) RORRes e

hasCyrillic(t.value) (http(s)?://)2\p{Cyrillic}+ - - - o o .
STvaldPBindvalad) ~(BHp) 000008 (isVarAssign(t) V isAtrAssign(t)) A isNonSecret(t.prev_code_token) A isUser(t.prev_code_token) A lisPlace-

sSuspiciousWord(tvalug) hacklfixme holder(t.next_code_token) A isAdmin(t.next_code_token) In the process of feedback collection, tool owners can learn more on how to
defectfweak ke (sVarAssign() V isAtrAssign(t) A hasCyrillidtnext_code_token) extend the anti-patterns coverage and how to better customise the tool!

)V isAtrassign(t)) A isPs L.prev_code_token) A isEmptyPassword(t.prev_code_token)

isWeakCrypto(tvalue) *(shaljmds) isVarAssign(t) V isAtrAssign(1)) A is d(t.prev_code_token) A isStrongPwd(t.next_code_token)
isCheekSum(r.value) checksumlgpg lencies 1) A isVersion(tprev_code_token) A isMalicious(Lnext_code_token)

iSHTTP(t.valuc) “http://+ 55T the URL is in the Iist of configurable safc domains/whitelist. If the URL is in the whitelist, an alert should not be raised.
isUserDefault(z. value) pe-puppet|pe-webserver|pe-puppel bt is in the database of malicious dependencies.

LGNSO Cheock our paper for more! Tables 5 & 7

orchestration-services|pe-ace-sery
bolt-server

invalidSecret(t.value) undefinedjunsetfwww-datajwwwrun|
wwwinolyes|[Jjundefltrueifalselchangeit|
changeme|none
t.value) Strong] Si hecker(t.value) @rmaranhao
lue) tvalne ==

https://github.com/TQRG/puppet-lint-infrasecure maranhao

Work in Progress Outline

Exploring dynamic taint analysis to keep track of vaults (storage where secrets

can be stored to not be hard-coded in the scripts). About me

Research Overview
Taint Analysis (Weak Password) if $u:vault:password is non-weak, then it's safe

$password = * Tainted Variable (source) $password = * Tainted Variable (source) COI Iection of SAST Tools

$password = $::vault:password $password = $::vault:password Loaded by DA (= #/1mAn57)

Suser = do_sometring(Spassorc) (s Suser = do_something(Susemame, Spassword) (sink Software Vulnerability Detection + Al

The question is: what’s inside . .
$uvault:password? Is it safe? if $uvault:password is weak, then it's not safe Best Practlces For Patch Documentatlon
$password = Tainted Variable (source)
By monitoring the code execution and .
interaction between Puppet and $password = $::vault:password Loaded by DA (= 123456) Alert Prioritisation
vaults (i.e., dynamic analysis), we
could check the value stored in the

$:vault:password variable. Infrastructure-as-code (IaC) scripts

$user = do_something($username, $password) (sink)

Fixing Vulnerabilities Potentially Hinders Software Maintainability

https://github.com/TQRG/puppet-lint-infrasecure GHEETED

Fixing Vulnerabilities Potentially Hinders Software Maintainability
(Do security patches have a negative impact in software maintainability ?)

SOFTWARE PRODUCT QUALITY ISO/IEC 25010
@ Complex code is difficult to understand, maintain and test.
Complexity hides bugs -> security vulnerabilities

\ Software vulnerabilities ~ code complexity

The risk of software vulnerabilities can be minimised by writing clean
SE(g;J:I)TV and maintainable code

@rmaranhao

Fixing Vulnerabilities Potentially Hinders Software Maintainability
(Do security patches have a negative impact in software maintainability ?)

® BUT improving software security is not a trivial task and requires implementing patches
that might affect software maintainability.

PREVIOUS RESEARCH @ 34% of security patches performed introduce new problems and 52% are incomplete and do
not fully secure systems.

OUR HYPOTHESIS ® Some of these patches may have a negative impact on the software maintainability
and, possibly, even be the cause of the introduction of new vulnerabilities —
harming software reliability and introducing technical debt.

MAIN CONTRIBUTION 93 Evidence that supports the trade-off between security and maintainability: developers may
TO THE SE COMMUNITY be hindering software maintainability while patching vulnerabilities.

@rmaranhao

Fixing Vulnerabilities Potentially Hinders Software Maintainability
(Do security patches have a negative impact in software maintainability ?)

MAINTAINABLE SECURITY Thc_e degree of effectlveness_ gnd efficiency with which software can be changed to
mitigate a security vulnerability — corrective maintenance.

THE PROBLEM @® Many developers still lack knowledge on best practices to deliver and maintain secure
and high-quality software.

& Software maintainability is ~75% of the cost related to a project.
4 Available tooling does not provide any information on the quality of a patch.

WHY IS IT IMPORTANT? B In a world where zero day vulnerabilities are constantly emerging, mitigation needs to
be fast and efficient.

+# Therefore, it is important to write maintainable code to support the production of more
secure software and, prevent the introduction of new vulnerabilities.

@rmaranhao

Fixing Vulnerabilities Potentially Hinders Software Maintainability
(Do security patches have a negative impact in software maintainability ?)

MOTIVATION

More lines of code
More cyclomatic
complexity

Listing 1 Patch provided by OpenSSL developers to the CVE-2016-6304 vulnerability on file ssl/t] libc @rmaranhao

Write Short Units of Code COMPLIANCE

o wiesmaleUns ofcose

Write Simple Units of Code

g candidates

Write Code Once
Keep Unit Interfaces Small

Separate Concerns in Modules

Couple Architecture
Components Loosely

Keep Architecture MAINTAINABILITY
Components Balanced

Keep Your Code Base Small

tomate Tests

IMPACT

Seourity Vunerabiy
Free.

Write Clean Code Code Smells

Better Code Hub:

@rmaranhao

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

® Hard time designing/implementing patches that respect
the limit bounds of branch points and function/module sizes.

The percentage of patches that hinder software maintainability per
guideline.

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

» x9% The percentage of patches that hinder software maintainability per
guideline.

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

@ Hard time designing/implementing patches that respect
the limit bounds of branch points and function/module sizes.

2 Developers forget to use the Introduce Parameter Object
patch pattern when patches require to input new information
to a function/class.

® x9 The percentage of patches that hinder software maintainability per
guideline.

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

® Hard time designing/implementing patches that respect
the limit bounds of branch points and function/module sizes.

2 Developers forget to use the Introduce Parameter Object
patch pattern when patches require to input new information
to a function/class.

Lack of encapsulation to hide implementation details and
make the system more modular.

» x9% Thepercentage of patches that hinder software maintainability per
guideline.

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Overall Score - M(v)

The larger number of negative cases may be explained
by guidelines with higher concentrations of negative
cases with higher amplitudes.

™ 406 patches (41.9%)
@ 188 patches (19.4%)
® 375 patches (38.7%)

Security patches may have a negative impact on the
maintainability of open-source software.

p-value = 0.044 < 0.05

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Guideline/Metric

There is a very significant number of patches with
negative impact on software maintainability per
guideline—between 10% and 40%.

@ Hard time designing/implementing patches that respect
the limit bounds of branch points and function/module sizes.

2 Developers forget to use the Introduce Parameter Object
patch pattern when patches require to input new information
to a function/class.

Lack of encapsulation to hide implementation details and
make the system more modular.

& Developers reuse code by copying and pasting existing
code fragments instead of using the Extract method
refactoring technique. Clone detection tools may help with
this problem.

» x5 The percentage of patches that hinder software maintainabilty per
guideline.

RQ1: What is the impact of security patches on
the maintainability of open-source software?
Severity, Programming Language

® Overall languages have a considerable amount
of cases that negatively impact maintainability —
between 35% to 50%—which confirms the need
for better/more secure programming
languages.

@ Higher severity vulnerabilities patches may have a
more negative impact on maintainability — high/
medium severity vulnerabilities may need more
attention than low severity while patching.

RQ2: Which wea_kne_ss are more likely to affect RQ3: What is the impact of security patches versus
open-source maintainability? CWE-20, CWE-200, CWE-401, CWE-22 regular changes on the maintainability of open-source
software?

cwea W Results for both baselines show that
Impni/p?rdlniput ; ; ; I I regular changes are less prone to hinder
alidation " the software maintainability of open-source

Information software.

Exposure

Security Patches
93 Security-related commits are observed to
harm software maintainability, while regular
changes are less prone to harm software
Missing Release maintainability.
of Memory after

Effective Lifetime .
+# Thus, we urge the importance of

adopting maintainability practices while

hath applying security patches.

Traversal

size-baseline: a dataset of random regular changes with the same size as
security patches; random-baseline: a dataset of random changes.

Common Weakness Enumeration (CWE) Website: @rmaranhao @rmaranhao

END. WHAT SHOULD YOU DO NEXT? That’s it, folks!

' Follow the best practices. Developers harm software maintainability
because they still not consider some quality aspects in their solutions/

patches. Any questions? Ask now.

A\ Prioritise high and medium severity vulnerabilities. In the future, we can get in touch by email:
rui@computer.org

® Pay special attention to the types of software vulnerabilities that are more
prone to have an impact on software vulnerability.

%% Build tools for Patch Risk Assessment Bases on Source Code Metrics,
Static Analysis features and Software Vulnerability Metadata.

21 Make maintainable security part of the CS curricula.

¥ Build better and more secure programming languages.

& Replication package available: @rmaranhao @rmaranhao

mailto:rui@computer.org

